
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100090 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 203

Real-Time Operating Systems: An Overview

Sonali Grover,

Department of Information technology,

Dronacharya College of Engineering, Gurgaon, India

Abstract- A real-time operating system (RTOS) is

an operating system intended to serve real-

time application requests. It must be able to process

data as it comes in, typically without buffering delays.

Processing time requirements (including any OS

delay) are measured in tenths of seconds or shorter.

This paper summarizes what is a real-time operating

system (RTOS), architecture and scheduling

algorithms of real time operating systems and how

they differ from standard general-purpose operating

systems like Windows.

Index Terms- Real-time operating system (RTOS),

operating system, control applications, general-

purpose operating systems.

I. INTRODUCTION

An integrated operating system is a set of system

software that organizes, manages and controls the

resources and computing power of a computer or

computer networks. In general, an operating

system is responsible for managing the hardware

resources of a computer and hosting applications

that run on the computer.

An RTOS performs these tasks, but is also

specially designed to run applications with very

precise timing and a high degree of reliability. This

can be especially important in measurement and

automation systems where downtime is costly or a

program delay could cause a safety hazard. A real-

time operating system is a multitasking operating

system that aims at executing real-time

applications. Real-time operating systems often use

specialized scheduling algorithms so that they can

achieve a deterministic nature of behavior. The

main objective of real-time operating systems is

their quick and predictable response to events. A

key characteristic of an RTOS is the level of its

consistency concerning the amount of time it takes

to accept and complete an application's task; the

variability is jitter. A hard real-time operating

system has less jitter than a soft real-time operating

system. The chief design goal is not

high throughput, but rather a guarantee of a soft or

hard performance category. An RTOS that can

usually or generally meet a deadline is a soft real-

time OS, but if it can meet a

deadline deterministically it is a hard real-time OS.
An RTOS has an advanced algorithm

for scheduling. Scheduler flexibility enables a

wider, computer-system orchestration of process

priorities, but a real-time OS is more frequently

dedicated to a narrow set of applications. Key

factors in a real-time OS are minimal interrupt

latency and minimal thread switching latency; a

real-time OS is valued more for how quickly or

how predictably it can respond than for the amount

of work it can perform in a given period of time.

Important Terminology and Concepts

Determinism: An application (or critical piece of

an application) that runs on a hard real-time

operating system is referred to as deterministic if its

timing can be guaranteed within a certain margin of

error.

Soft vs. Hard Real-Time: An OS that can

absolutely guarantee a maximum time for the

operations it performs is referred to as hard real-

time. In contrast, an OS that can usually perform

operations in a certain time is referred to as soft

real-time.

Jitter: The amount of error in the timing of a task

over subsequent iterations of a program or loop is

referred to as jitter. Real-time operating systems are

optimized to provide a low amount of jitter when

programmed correctly; a task will take very close

to the same amount of time to execute each time it

is run. In the next sections, we examine certain

important aspects of RTOSs.

This paper is organized as follows. The next

section, Architecture of RTOS describes the entire

architecture of RTOSs. The next section after that

provides a brief description of some available

RTOSs.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Task_(computing)
http://en.wikipedia.org/wiki/Jitter
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Real-time_computing#Criteria_for_real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing#Criteria_for_real-time_computing
http://en.wikipedia.org/wiki/Deterministic_algorithm
http://en.wikipedia.org/wiki/Interrupt_latency
http://en.wikipedia.org/wiki/Interrupt_latency
http://en.wikipedia.org/wiki/Thread_switching_latency

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100090 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 204

II. ARCHITECTURE OF RTOS

Kernel: RTOS kernel acts as an abstraction layer

between the hardware and the applications. There

are three broad categories of kernels

 Monolithic kernel

Monolithic kernels are part of Unix-like operating

systems like Linux, FreeBSD etc. A monolithic

kernel is one single program that contains all of the

code necessary to perform every kernel related

task. It runs all basic system services (i.e. process

and memory management, interrupt handling and

I/O communication, file system, etc) and provides

powerful abstractions of the underlying hardware.

Amount of context switches and messaging

involved are greatly reduced which makes it run

faster than microkernel.

 Microkernel

It runs only basic process communication

(messaging) and I/O control. It normally provides

only the minimal services such as managing

memory protection, Inter process communication

and the process management. The other functions

such as running the hardware processes are not

handled directly by microkernels. Thus, micro

kernels provide a smaller set of simple hardware

abstractions. It is more stable than monolithic as

the kernel is unaffected even if the servers failed

(i.e.File System). Microkernels are part of the

operating systems like AIX, BeOS, Mach, Mac OS

X, MINIX, and QNX. Etc

 Hybrid Kernel

Hybrid kernels are extensions of microkernels with

some properties of monolithic kernels. Hybrid

kernels are similar to microkernels, except that they

include additional code in kernel space so that such

code can run more swiftly than it would were it in

user space. These are part of the operating systems

such as Microsoft Windows NT, 2000 and XP.

DragonFly BSD, etc

 Exokernel

Exokernels provides efficient control over

hardware. It runs only services protecting the

resources (i.e. tracking the ownership, guarding the

usage, revoking access to resources, etc) by

providing low-level interface for library operating

systems and leaving the management to the

application.

Six types of common services are listed below and

explained in subsequent sections

 Task management and scheduling

 Interrupt and event Handling

 Memory management

 Task synchronization

 Device I/O management

 Time management

Task management and Scheduling: In typical
designs, a task has three states:

1. Running (executing on the CPU);

2. Ready (ready to be executed);

3. Blocked (waiting for an event, I/O for

example).

Most tasks are blocked or ready most of the time

because generally only one task can run at a time

per CPU. The number of items in the ready queue

can vary greatly, depending on the number of tasks

the system needs to perform and the type of

scheduler that the system uses. On simpler non-

preemptive but still multitasking systems, a task

has to give up its time on the CPU to other tasks,

which can cause the ready queue to have a greater

number of overall tasks in the ready to be executed

state (resource starvation).

Usually the data structure of the ready list in the

scheduler is designed to minimize the worst-case

length of time spent in the scheduler's critical

section, during which preemption is inhibited, and,

in some cases, all interrupts are disabled. But the

choice of data structure depends also on the

maximum number of tasks that can be on the ready

list.

If there are no more than a few tasks on the ready

list, then a doubly linked list of ready tasks is likely

optimal. If the ready list usually contains only a

few tasks but occasionally contains more, then the

list should be sorted by priority. That way, finding

the highest priority task to run does not require

iterating through the entire list. Inserting a task then

requires walking the ready list until reaching either

the end of the list, or a task of lower priority than

that of the task being inserted.

Care must be taken not to inhibit preemption during

this search. Longer critical sections should be

divided into small pieces. If an interrupt occurs that

makes a high priority task ready during the

insertion of a low priority task, that high priority

task can be inserted and run immediately before the

low priority task is inserted.

The critical response time, sometimes called the

flyback time, is the time it takes to queue a new

ready task and restore the state of the highest

priority task to running. In a well-designed RTOS,

readying a new task will take 3 to 20 instructions

per ready-queue entry, and restoration of the

highest-priority ready task will take 5 to 30

instructions.

http://en.wikipedia.org/wiki/Resource_starvation
http://en.wikipedia.org/wiki/Doubly_linked_list

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100090 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 205

In more advanced systems, real-time tasks share

computing resources with many non-real-time

tasks, and the ready list can be arbitrarily long. In

such systems, a scheduler ready list implemented as

a linked list would be inadequate.

Algorithms

Some commonly used RTOS scheduling

algorithms are:

 Cooperative scheduling

 Preemptive scheduling

 Rate-monotonic scheduling

 Round-robin scheduling

 Fixed priority pre-emptive scheduling, an

implementation of preemptive time

slicing

 Fixed-Priority Scheduling with Deferred

Preemption

 Fixed-Priority Non-preemptive

Scheduling

 Critical section preemptive scheduling

 Static time scheduling

 Earliest Deadline First approach

 Stochastic digraphs with multi-threaded graph

traversal

Interrupt handling and scheduling: Since an

interrupt handler blocks the highest priority task

from running, and since real time operating systems

are designed to keep thread latency to a minimum,

interrupt handlers are typically kept as short as

possible. The interrupt handler defers all interaction

with the hardware if possible; typically all that is

necessary is to acknowledge or disable the interrupt

(so that it won't occur again when the interrupt

handler returns) and notify a task that work needs

to be done. This can be done by unblocking a

driver task through releasing a semaphore, setting a

flag or sending a message. A scheduler often

provides the ability to unblock a task from interrupt

handler context.

An OS maintains catalogues of objects it manages

such as threads, mutexes, memory, and so on.

Updates to this catalogue must be strictly

controlled. For this reason it can be problematic

when an interrupt handler calls an OS function

while the application is in the act of also doing so.

The OS function called from an interrupt handler

could find the object database to be in an

inconsistent state because of the application's

update. There are two major approaches to deal

with this problem: the unified architecture and the

segmented architecture. RTOSs implementing the

unified architecture solve the problem by simply

disabling interrupts while the internal catalogue is

updated. The downside of this is that interrupt

latency increases’ potentially losing interrupts. The

segmented architecture does not make direct OS

calls but delegates the OS related work to a

separate handler. This handler runs at a higher

priority than any thread but lower than the interrupt

handlers. The advantage of this architecture is that

it adds very few cycles to interrupt latency. As a

result, OSes which implement the segmented

architecture are more predictable and can deal with

higher interrupt rates compared to the unified

architecture.

Memory management: Two types of memory

managements are provided in RTOS – Stack and

Heap. Stack management is used during context

switching for TCBs. Memory other than memory

used for program code, program data and system

stack is called heap memory and it is used for

dynamic allocation of data space for tasks.

Management of this memory is called heap

management.

Task synchronization: Synchronization is

essential for tasks to share mutually exclusive

resources (devices, buffers, etc.) and/or allow

multiple concurrent tasks to be executed (e.g. Task

A needs a result from task B, so task A can only

run till task B produces it). Task synchronization is

achieved using two types of mechanisms:

 Event Objects: Event objects are used

when task synchronization is required

without resource sharing. They allow one

or more tasks to keep waiting for a

specified event to occur. Event object can

exist either in triggered or non-triggered

state. Triggered state indicates resumption

of the task.

 Semaphores: A semaphore has an

associated resource count and a wait

queue. The resource count indicates

availability of resource. The wait queue

manages the tasks waiting for resources

from the semaphore. A semaphore

functions like a key that define whether a

task has the access to the resource. A task

gets an access to the resource when it

acquires the semaphore.

Device I/O management: RTOS generally

provides large number of APIs to support diverse

hardware device drivers.

Time management: Tasks need to be performed

after scheduled durations. To keep track of the

delays, timers- relative and absolute- are provided

in RTOS.

III. EXAMPLES OF RTOS

Some of the best known, most widely deployed,

real-time operating systems are
:

http://en.wikipedia.org/wiki/Preemption_(computing)
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling
http://en.wikipedia.org/wiki/Round-robin_scheduling
http://en.wikipedia.org/wiki/Fixed_priority_pre-emptive_scheduling
http://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice
http://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Tree_traversal

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100090 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 206

 LynxOS

 OSE

 QNX

 RTLinux

 VxWorks

 Windows CE

 FreeRTOS

LynxOS: The LynxOS RTOS is a Unix-like real-

time operating system from Lynx Software

Technologies. Sometimes, known as Lynx

Operating System, LynxOS features full POSIX

conformance and, more recently, Linux

compatibility. LynxOS is mostly used in real-time

embedded systems, in applications for avionics,

aerospace, the military, industrial process control

and telecommunications.

RTLinux: RTLinux is a hard real

time RTOS microkernel that runs the

entire Linux operating system as a

fully preemptive process. It is one of the hard real-

time variants of Linux, among several, that makes

it possible to control robots, data acquisition

systems, manufacturing plants, and other time-

sensitive instruments and machines.

Windows CE: Microsoft Windows CE 5.0 is an

open, scalable, 32-bit operating system (OS) that

integrates reliable, real time capabilities with

advanced Windows technologies. Windows CE

allows you to build a wide range of innovative,

small footprint devices. A typical Windows CE–

based device is designed for a specific use, often

runs disconnected from other computers, and

requires a small OS that has a deterministic

response to interrupts. Examples include enterprise

tools, such as industrial controllers,

communications hubs, and point-of-sale terminals,

and consumer products, such as cameras, Internet

appliances, and interactive televisions.

FreeRTOS: FreeRTOS is a market leading real

time operating system (or RTOS) from Real Time

Engineers Ltd. that supports 35 architectures and

receives 107000 downloads a year. It is

professionally developed, strictly quality

controlled, robust, supported, and free to use in

commercial products without any requirement to

expose your proprietary source code. It is used in

every imaginable market sector from toys to

aircraft navigation.

IV. HOW RTOS DIFFERS FROM GENERAL-

PURPOSE OS

Operating systems such as Microsoft Windows and

Mac OS can provide an excellent platform for

developing and running your non-critical

measurement and control applications. However,

these operating systems are designed for different

use cases than real-time operating systems, and are

not the ideal platform for running applications that

require precise timing or extended up-time. This

section will identify some of the major under-the-

hood differences between both types of operating

systems, and explain what you can expect when

programming a real-time application.

Setting Priorities

When programming an application, most operating

systems (of any type) allow the programmer to

specify a priority for the overall application and

even for different tasks within the application

(threads). These priorities serve as a signal to the

OS, dictating which operations the designer feels

are most important. The goal is that if two or more

tasks are ready to run at the same time, the OS will

run the task with the higher priority.

In practice, general-purpose operating systems do

not always follow these programmed priorities

strictly. Because general-purpose operating systems

are optimized to run a variety of applications and

processes simultaneously, they typically work to

make sure that all tasks receive at least some

processing time. As a result, low-priority tasks may

in some cases have their priority boosted above

other higher priority tasks. This ensures some

amount of run-time for each task, but means that

the designer's wishes are not always followed.

In contrast, real-time operating systems follow the

programmer's priorities much more strictly. On

most real-time operating systems, if a high priority

task is using 100% of the processor, no other lower

priority tasks will run until the high priority task

finishes. Therefore, real-time system designers

must program their applications carefully with

priorities in mind. In a typical real-time application,

a designer will place time-critical code (e.g. event

response or control code) in one section with a very

high priority. Other less-important code such as

logging to disk or network communication may be

combined in a section with a lower priority.

Interrupt Latency

Interrupt latency is measured as the amount of time

between when a device generates an interrupt and

when that device is serviced. While general-

purpose operating systems may take a variable

amount of time to respond to a given interrupt, real-

http://en.wikipedia.org/wiki/LynxOS
http://en.wikipedia.org/wiki/Operating_System_Embedded
http://en.wikipedia.org/wiki/QNX
http://en.wikipedia.org/wiki/RTLinux
http://en.wikipedia.org/wiki/VxWorks
http://en.wikipedia.org/wiki/Windows_CE
http://en.wikipedia.org/wiki/FreeRTOS
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Microkernel
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Preemption_(computing)
http://www.freertos.org/RTOS.html
http://www.eetimes.com/document.asp?doc_id=1263083
http://www.freertos.org/about-RTOS.html
http://www.freertos.org/RTOS-contact-and-support.html
http://www.freertos.org/RTOS-contact-and-support.html
http://www.freertos.org/FreeRTOS_Support_Forum_Archive/freertos_support_forum_archive_index.html
http://www.freertos.org/a00114.html
http://www.freertos.org/a00114.html

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100090 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 207

time operating systems must guarantee that all

interrupts will be serviced within a certain

maximum amount of time. In other words, the

interrupt latency of real-time operating systems

must be bounded.

Performance

One common misconception is that real-time

operating systems have better performance than

other general-purpose operating systems. While

real-time operating systems may provide better

performance in some cases due to less multitasking

between applications and services, this is not a rule.

Actual application performance will depend on

CPU speed, memory architecture, program

characteristics, and more.

Though real-time operating systems may or may

not increase the speed of execution, they can

provide much more precise and predictable timing

characteristics than general-purpose operating

systems.

REFERENCES

[1] Wikipedia, Real time operating systems

http://en.wikipedia.org/wiki/Real-

time_operating_system

[2] Real time operating systems Dedicated Systems

Encyclopedia.http://www.realtime-

info.be/encyc/buyersguide/rtos/rtosmenu.htm.

[3] Microsoft Technical Document, “Real-Time

Systems with Microsoft Windows CE”, Available

at,

http://www.eu.microsoft.com/windows/embedded/

ce/resources/howitworks/realtime.asp.

[4] OSE, “OSE Realtime Kernel”,

http://www.ose.com/PDF/rtk.pdf

[5] FreeRTOS, http://www.freertos.org

