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Abstract- Release planning for incremental software 

development allocates features to releases such that 

technical, resource, risk, and budget constraints are 

met. A feature are offered to release only if all of its 

necessary tasks are done before the given release date. 

In the context of release planning, the question 

studied in this paper is how to allocate these resources 

to the tasks of implementing the features such that the 

value gained from the released features is maximized. 

We propose at two phase optimization approach 

called ANTRASORP that combines the strength of two 

existing solution methods. Phase1 applies integer 

linear programming to a relaxed version of the full 

problem. Phase2 uses Ant colony optimization a 

reduced search space to generate operational resource 

allocation plans. 

Index Terms—Release planning, resource allocation, 

software project management, incremental software 

development, Ant Colony Optimization. 

I. INTRODUCTION  

Incremental software development provides 

products in releases where each release 

provides additional or modified functionality 

compared to the previous release. A major 

problem faced by companies developing or 

maintaining large and complex systems is 

determining which elements of a typically 

large set of candidate features should be 

assigned to which releases of the software. In 

addition, there is the question of how to assign 

resources accordingly. Without good release 

planning, critical features are not provided at 

the right time. This might result in dissatisfied 

customers; time an budget overruns, and 

decreased competitiveness in the market place. 

Release and resource decisions depend on each 

other. Defining releases without looking into 

the necessary resources means that the 

proposed plans are unlikely to be feasible. One 

of the key limitations of current release planning 

methods is the lack of a systematic process to 

balance the appropriate delivery of features with 

the resources available. Greer and Ruhe [7] and van 

den Akker et al. [8]. On the other hand, planning 

resources without conssidering the business 

impact of the product releases can result in 

missed opportunities for value creation. It is 

well known that productivity may vary 

significantly among developers [1][2]. Each 

developer might have different productivity 

when performing different types of tasks. 

Good resource allocation in this context takes 

on even more importance. The resulting 

problem of optimal assignment of resources to 

realize the features of a sequence of releases is 

called Ant Resource Allocation for Software 

Release Planning, abbreviated by ANTRASORP. 

Surprisingly even with the large applicability and 

the significant results obtained by the Ant colony 

optimization. Meta heuristic very little has been 

done of this strategy to tackle software Engineering 

problems module as optimization problem. (ACO) 

Swam intelligence framework inspired by the 

behavior of ants during food in search. 

A. Features and Their Assignment to Releases 

We consider a feature to be “a logical unit of 

behavior that is specified by a set of functional 

and quality requirements”[3].nature. ACO 

minimizes the indirect communication strategy 

employed by real ants mediated pheromone trails. 

Most important and riskier requirements are 

anticipated.  

Definition 1: A release plan is an assignment of 

feature store releases. It is formally described 

by a matrix of decision variables x(n,k) with 

X(n,k) =1 if and only if feature f(n) is offered 

at release k (k=1..k) (and x(n,k) =0 otherwise. 

Assignment of features to releases cannot be 

done without considering different types of 

feature dependencies.  There are different 

types of dependencies, as stated by 

Carlshamreetal.[6], which might impact the   

planning process. We consider the two most 

important ones: coupling and precedence 

relationship among features. Coupling of 

features means that a pair of features only 

makes combination with each other. We 

assume that coupling will be handled in 

advance by integrating the respective features 
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into a more comprehensive whole.  Precedence 

means that a feature is not useful in a release 

without having another feature already 

implemented. The precedence relationship is 

formally defined as follows: 

Definition 2. Feature f(i) precedes feature f(j) 

means that if feature f(i) is made available at 

release k, then f(j) cannot be made available at 

any release 1..k earlier than k. We will say that 

features f(i) and f(j) are in a precedence 

relationship. 

 

II. PLANNING OBJECTIVES 

   What actually constitutes the planning 

objective needs careful consideration and 

cannot be answered in general terms. Often, 

the objective is to optimize a combination of 

criteria such as the product’s business value, 

time to market, and risk. Furthermore, there is 

a dependency of actual business value created 

by a feature is larger when it enters the market 

sooner; perhaps because a product feature 

might be available before those of a 

competitor. For our purposes , we assume a 

utility function value F(x) expressing the 

cumulative business value of all features 

assigned to releases according to plan x. F(x) 

is composed of individual values v(n, k), 

where v(n, k) describes the expected value 

contribution of feature f(n)  in case it  is 

assigned to release k. Each value v(n, k) itself 

is composed from the priorities assigned to 
features by the (weighted) stakeholders. The 

prioritization can be done with respect to not 

only one but a portfolio of (weighted) criteria. 

Sample prioritization criteria are the 

following: the estimated market value of 

feature f(n), urgency of feature f(n), customer 

satisfaction, and estimated market opportunity. 

For this paper, we assume that value estimates 

v(n, k) are given by the project manager. For 

further details on the composition of the 

coefficients v(n, k), we refer to [4].  

Definition 3. The quality of a release plan x is 

described by the degree of optimality that x 

achieves with respect to utility function  F(x). 

 

III. FEATURE-RELATED TASKS 

The realization of each feature requires a 

sequence of tasks. We assume Q different 

types of tasks. These tasks correspond to the 

fundamental technical, managerial, and 

support contributions necessary to develop  

software.  Minimally, these tasks cover design, 

implementation and testing. The definition of 

what constitutes a task is flexible. There might 

be further differentiation within an activity. 

Could be refined into unit testing, integration 

testing, acceptance testing, and regression 

testing. While, in principle, the granularity of the 

definition of a task is flexible, we have to keep 

our model reasonable in size. Data related to 

features f(n). 

 

A. Resources  

     Human resources (e.g., different types of 

developers, analysts, external collaborators, etc.) 

are intended to perform the tasks needed to 

create the features. For each individual task task 

(n, q) of type q necessary to provide feature f(n), 

a workload w(n, q) is defined as the effort 

needed to fulfill the task. The time needed to 

perform a task depends not only on the workload 

but also on the productivity of the developer 

assigned to this task nonhuman resources (e.g., 

capital) are considered for each release as well. 

We assume M different types of nonhuman 

resources. Feature f(n) consumes an amount r(n, 

m) of nonhuman resources of type m. We 

introduce cap (k, m) with m =1..M and k=1..k as 

the quantity of the (nonhuman) resource of type 

m that is available in release k. This results in 

the following capacity constraints:     

∑ ∑ r(n, m). x(n, h) ≤n=1..Nh=1..k

∑ cap(h, m)h=1..k  

for all m =1 and k =1..K. 

A. Assignment of Tasks to Developers 

    It is well known that there are major 

differences in the skills and productivity of 

software developers [1]. In order to 

accommodate this, we introduce an average skill 

level with a normalized productivity factor of 

1.0 for each type of task. This allows us to 

consider more or less skilled developers We 

consider a pool of D developers, denoted by 

dev(1)...dev (D), performing one or more types 

of development activities. The productivity 

factor prod(d, q) of a developer dev(d) for 

performing a task of type q indicates whether the 

developer is able to perform the task at all 

(prod(d,q)≠0)and, if “yes,” how productively (s) 

he performs that task. In order to summarize 

information related to the assignment of 

developers to tasks, we will later use vector u 

defined as u(d,t,n,q)=1 if and only if at moment t 

(t=1..t|K|) developer d(d=1..D) is working on 

task(n,q) (and u(d,t,n,q)=0 otherwise).The 



 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100095 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 191 
 

assignment of human resources to feature-

related tasks is illustrated in Fig. 2. For 

illustrative purposes, we consider an example of 

three features with three distinct tasks. A pool of 

three developers is available to perform the 

tasks. Each developer has different levels of 

productivity for performing the individual tasks. 

The three-dimensional productivity vector 

indicates the relative productivity to perform 

three tasks (in this order): design, 

implementation, and testing. For example, 

developer dev (2) having productivity vector (1, 

0, 2) means that this developer is twice as 

productive as an average tester (degree of 

productivity with regards to testing is 2) but 

cannot perform an implementation task (the 

degree of productivity with regards to 

implementation is 0). In Fig. 2, we can also see a 

possible assignment of developers to the nine 

tasks under consideration. For each developer, 

the number at the arc between a developer and a 

task indicates the order in which the assigned 

tasks will be performed by the developers. To 

look at dev (2) again, the first task is the design 

for feature f(3), followed by testing for 

f(3).Finally, testing for f(2) is done. To illustrate 

the impact of varying productivity values, we 

consider the estimated workload for task (1, 3) 

to be W (1,3)=10 person days. Then, developer 

dev (3) would need 10 days to perform the tasks. 

As the productivity of developer dev (2) for the 

task of testing is assumed to be 2, the same task 

when performed by this developer would take 

only five days. The best possible assignment 

takes into account the productivity of the 

developers, their availability, and the possible 

dependencies between tasks. 

IV. OVERALL PROBLEM STATEMENT 

   We describe a release plan x and the 

associated resource allocation u by the 

combined vector (x, u). We also use the terms 

“assignment” for x and “detailed schedule” for 

u. The composite set of all feasible 

assignments and detailed schedules1 (x, u) is 

denoted by the Cartesian product X, Uor just 

(X, U). We note that the part of the problem 

related to detailed schedules does not directly 

influence the stated objective of planning but 

is part of the constraint set that needs to be 

fulfilled. We can say that the schedule 

“enables” the features. The objective is to 

maximize the stated utility function F, which is 

based on the value parameters v (n, k) 

introduced in Section 2.1.2. The problem 

ANTRASORP is formally stated as Maximize  

{F(x)=

∑ ∑ v(n, k). x(n, k)subject to (x, u) ∈k=1..Kn=1..N

(X, U)} 
 

V. SOLUTION APPROACH 
 
Two-Phase Problem Solution Approach 
 
An Overview 
Given the analysis of the problem’s complexity, we 

have concluded that we need a specialized solution 

approach for   ANTRASORP. Our two-phase 

approach, called ANTRASORP OPTIMIZE, combines 

the strength of special structure integer linear 

programming (Phase 1) with the power of GAs 

(Phase 2). The advantage is twofold. First, from 

Phase 1, we can generate an upper bound for the 

maximum value achievable. This allows an 

evaluation of the solution generated in Phase 2. 

Second, the solution obtained from Phase 1 is used 

to restrict the set   (permutations of N features) to 

the set  used in the GA of Phase 2. This can 

significantly reduce the computational effort and 

allows solution of problems of small and medium 

size. Phase 2 can be applied without application of 

Phase 1, but the search space would be 

substantially larger in this case. The restriction 

provided by Phase 1 is heuristic in its nature. That 

means that it is likely that  (reduced search space) 

contains a good solution. However, there is no 

guarantee that it necessarily contains the optimal 

solution. We will call the direct application of GA 

to  ANTRASORP unfocused search (UFS), while the 

two-phase method OPTIMIZE ANTRASORP is also 

called focused search (FS) (when focusing on the 

search strategy).  

 
Phase 1 

To facilitate the process of solving (4), we initially 

consider a simplified version of ANTRASORP 

Instead of looking at all t (K) possible points of 

time t (t =1..t(K)) for scheduling tasks, in 

ANTRASORP, we only look at release dates t(k) 

(k=1..K).  This leads to a significant reduction of 

variables and constraints. To formally describe this 

simplified problem, we use the variables y(d, k, n, 

q) instead of variables u(d, t, n, q)  Vector u is 

larger in size than y. The reason for that is that u is 

defined for each point in time instead of just the 

release dates t(k) (k=1..K). More specifically, y is 

defined as y(d, k, n, q)=1 if and only if task(n,q) is 
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assigned to  developer d and is finished in release k 

(and y(d, k, n, q)=0 otherwise). 

Phase 2 The main idea of Phase 2 is that the 

optimal or at least a near-optimal solution of the 

complete ANTRASORP problem can be obtained 

from the relaxed version ANTRASORP . That means 

that we take solution x1 and try to adjust it to fulfill 

the additional constraints. In Phase 2, we use a GA 

[5] to search for the best solution for assigning 

human resources to the tasks of the features chosen 

for release. Cartesian Genetic Programming was 

originally developed by Miller and Thomson 

[11][12] for the purpose of evolving digital circuits 

and represents a program as a directed graph. For a 

solution x1 obtained from Phase 1, we define sets 

of indices of features belonging to the same release. 

An ACOG is differ from that algorithm given in 

reference [6]. (ACO) Swam intelligence framework 

inspired by the behavior of ants during food search 

in nature. ACO minimizes the indirect 

communication strategy employed by real ants 

mediated pheromone trails.  

1.Most important and riskier requirements are 

anticipated .  

       Maximize =∑ [𝑠𝑐𝑜𝑟𝑒𝑁
𝑖=1 (𝑝 − 𝑥i+1)-riski.xi].yi 

            Score = ∑ [𝑤𝑗. 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑐𝑗. 𝑥𝑖)]𝑀
𝑖=1 . 

2. Cost and precedence constraints  

                 X0 ≤ Xa   Ɐ (ra→rb).where ra ,rb   

R.  ∑ (𝐶𝑂𝑆𝑇𝑖𝑁
𝑖=1 . Fi) ,k  budget releasek, Ɐ k  

{1,…..p}. 

Daemon actions can be used to implement 

centralized actions which cannot be performed by 

single ants, such as the invocation of a local 

optimization procedure, or the update of global 

information to be used to decide whether to bias the 

search process from a non-local perspective 

[9][10]. 

Problem encoding: 

The problem will be encoded as a directed graph 

.G= (V,E) ,where E= Em+E0 , with Em representing 

mandatory moves and E0 representing optional 

ones. 

i. Each vertex in V represents a requirement. 

ii. A directed mandatory edge (Ti ,Tj) ∈ Em , if (ri   rj); 

iii. A directed optional edge (Ti , Tj)  E0 if 

(Ti ,Tj) ¢ Em , and i j. 

Overall - costi= costi  if requirement ri has no 

precedent requirements. 

Overall - costi= costi +∑ overall – cost j  

and (ri   rj) for all unvisited requirements where  

m and_ visk(i)={rj/(ri, rj) ∈ Em and visitedj = false} 

opt-visk(i) ={rj/(ri, rj) ∈ E0,effort(k)+overall_costj

budgetrelease and visitedj=false} overall 

initialization 

count 1 

main loop 

Repeat  

     Aw Algorithm 

Count++ 

Until count > Max.count 

Return best _planning 

ACO Algorithm 

main loop initialization 

Single Release planning loop 

main loop finalization 

for all vertices ri ∈ v, visitedi false 

for all vertices ri ∈ v, current_planning; ←0 

//finds a new release planning {current planning}// 

Ifcurrent_planningeval ()>best.planning.eval () 

then 

best_planning  current planning  

single release planning loop  

       for each release, k 

Randomly place ant k in a  

vertex ri  v, where 

Visited false and overall _cost; budjet release k 

ADDS (0,k) 

While opt_visk(i)  0 DO 

Move ant k to a vertex rj  opt_ visk (i) with 

probability Pij
k 

ADDs(rj,k) 

i j 

The probability distribution is specified as follows. 
For ant k, the probability of moving from state t to 

state n depends on the combination of two values 
[11] the attractiveness of the move, as computed by 
some heuristic indicating the priori desirability of 
that move. the trail level of the move, indicating 
how proficient it has been in the past to make that 

particular move: it represents therefore an a 
posteriori indication of the desirability of that move 
For example, the emerging structures in the case of 
foraging in ants include spatiotemporally organized 

networks of pheromone trails [14][15][16]. 

ACOG Algorithm   

         An ACOG is differ from that algorithm given 

in reference [6],it use genetic programming to 

enhance performance .It consists of two main 

sections : initialization and a main loop, where Gp is  

used in the second sections .The main loop runs for 

a user defined number of iterations .these are 

described below: 

Initialization : 
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a. Set initial parameters that are system: 

variable, states, function, input, output, Input 

trajectory, output trajectory 

b. Set initial pheromone trails value . 

c. Each ant is individually placed on initial 

state with empty memory. 

While termination conditions not meet do 

a. Construct Ant solution: 

 

 

Each ant constructs a path by successively applying 

the transition function the probability of moving 

from state to state depend on: as the attractiveness 

of the move , and the trail level of the move. 

b. Apply Local search 

c. Best Tour check 

If there is an improvement, update it. 

d. Update Trails : 

Evaporate a fixed proportion of the pheromone on 

each road . For each ant perform the “ant -cycle” 

pheromone update. Reinforce the best tour with a 

set number of “elitist ants” performing the “ant –

cycle”,Create a new population by applying the 

following operation, based on pheromone trails. 

The operations are applied to the individual(s) 

selected from the population with a probability 

based on fitness. 

 Darwinian Reproduction 

 Structure –Preserving crossover 

 Structure –Preserving Mutation  

End While  

VI. CONCLUSION 

Since Ant colony algorithm may produce redundant 

states in the graph, it’s better to minimize such 

graphs to enhance the behavior of the inducted 

system. A colony of ants moves through system 

states X, by applying Genetic Operations. By 

moving, each ant incrementally constructs a 

solution to the problem when an ant completes 

solution, or during the construction phase, the ant 

evaluates the solution and modifies the trail value 

on the components used in its solution. Ants 

deposit a certain amount of pheromone on the 

components; that is, either on the vertices or on the 

edges that they traverse. The amount of pheromone 

deposited may depend on the quality of the solution 

found. Subsequent ants use the pheromone 

information as a guide toward promising regions of 

the search space. Ants adaptively modify the way 

the problem is represented and perceived by other 

ants, but they are not adaptive themselves. The 

genetic programming paradigm permits the 

evolution of computer programs which can perform 

alternative computations conditioned on the 

outcome of intermediate calculations, which can 

perform computations on variables of many 

different types, which can perform iterations and 

recursions to achieve the desired result, which can 

define and subsequently use computed values and 

sub-programs, and whose size, shape, and 

complexity. 
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