
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100095 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 189

Ant Colony Optimization Resource Allocation for

Software Release Planning

Jasmine Sabeena, K.Sree Divya, K.Santhi

Department of CSE, S V College of Engineering, Tirupathi,India

Abstract- Release planning for incremental software

development allocates features to releases such that

technical, resource, risk, and budget constraints are

met. A feature are offered to release only if all of its

necessary tasks are done before the given release date.

In the context of release planning, the question

studied in this paper is how to allocate these resources

to the tasks of implementing the features such that the

value gained from the released features is maximized.

We propose at two phase optimization approach

called ANTRASORP that combines the strength of two

existing solution methods. Phase1 applies integer

linear programming to a relaxed version of the full

problem. Phase2 uses Ant colony optimization a

reduced search space to generate operational resource

allocation plans.

Index Terms—Release planning, resource allocation,

software project management, incremental software

development, Ant Colony Optimization.

I. INTRODUCTION

Incremental software development provides

products in releases where each release

provides additional or modified functionality

compared to the previous release. A major

problem faced by companies developing or

maintaining large and complex systems is

determining which elements of a typically

large set of candidate features should be

assigned to which releases of the software. In

addition, there is the question of how to assign

resources accordingly. Without good release

planning, critical features are not provided at

the right time. This might result in dissatisfied

customers; time an budget overruns, and

decreased competitiveness in the market place.

Release and resource decisions depend on each

other. Defining releases without looking into

the necessary resources means that the

proposed plans are unlikely to be feasible. One

of the key limitations of current release planning

methods is the lack of a systematic process to

balance the appropriate delivery of features with

the resources available. Greer and Ruhe [7] and van

den Akker et al. [8]. On the other hand, planning

resources without conssidering the business

impact of the product releases can result in

missed opportunities for value creation. It is

well known that productivity may vary

significantly among developers [1][2]. Each

developer might have different productivity

when performing different types of tasks.

Good resource allocation in this context takes

on even more importance. The resulting

problem of optimal assignment of resources to

realize the features of a sequence of releases is

called Ant Resource Allocation for Software

Release Planning, abbreviated by ANTRASORP.

Surprisingly even with the large applicability and

the significant results obtained by the Ant colony

optimization. Meta heuristic very little has been

done of this strategy to tackle software Engineering

problems module as optimization problem. (ACO)

Swam intelligence framework inspired by the

behavior of ants during food in search.

A. Features and Their Assignment to Releases

We consider a feature to be “a logical unit of

behavior that is specified by a set of functional

and quality requirements”[3].nature. ACO

minimizes the indirect communication strategy

employed by real ants mediated pheromone trails.

Most important and riskier requirements are

anticipated.

Definition 1: A release plan is an assignment of

feature store releases. It is formally described

by a matrix of decision variables x(n,k) with

X(n,k) =1 if and only if feature f(n) is offered

at release k (k=1..k) (and x(n,k) =0 otherwise.

Assignment of features to releases cannot be

done without considering different types of

feature dependencies. There are different

types of dependencies, as stated by

Carlshamreetal.[6], which might impact the

planning process. We consider the two most

important ones: coupling and precedence

relationship among features. Coupling of

features means that a pair of features only

makes combination with each other. We

assume that coupling will be handled in

advance by integrating the respective features

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100095 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 190

into a more comprehensive whole. Precedence

means that a feature is not useful in a release

without having another feature already

implemented. The precedence relationship is

formally defined as follows:

Definition 2. Feature f(i) precedes feature f(j)

means that if feature f(i) is made available at

release k, then f(j) cannot be made available at

any release 1..k earlier than k. We will say that

features f(i) and f(j) are in a precedence

relationship.

II. PLANNING OBJECTIVES

 What actually constitutes the planning

objective needs careful consideration and

cannot be answered in general terms. Often,

the objective is to optimize a combination of

criteria such as the product’s business value,

time to market, and risk. Furthermore, there is

a dependency of actual business value created

by a feature is larger when it enters the market

sooner; perhaps because a product feature

might be available before those of a

competitor. For our purposes , we assume a

utility function value F(x) expressing the

cumulative business value of all features

assigned to releases according to plan x. F(x)

is composed of individual values v(n, k),

where v(n, k) describes the expected value

contribution of feature f(n) in case it is

assigned to release k. Each value v(n, k) itself

is composed from the priorities assigned to
features by the (weighted) stakeholders. The

prioritization can be done with respect to not

only one but a portfolio of (weighted) criteria.

Sample prioritization criteria are the

following: the estimated market value of

feature f(n), urgency of feature f(n), customer

satisfaction, and estimated market opportunity.

For this paper, we assume that value estimates

v(n, k) are given by the project manager. For

further details on the composition of the

coefficients v(n, k), we refer to [4].

Definition 3. The quality of a release plan x is

described by the degree of optimality that x

achieves with respect to utility function F(x).

III. FEATURE-RELATED TASKS

The realization of each feature requires a

sequence of tasks. We assume Q different

types of tasks. These tasks correspond to the

fundamental technical, managerial, and

support contributions necessary to develop

software. Minimally, these tasks cover design,

implementation and testing. The definition of

what constitutes a task is flexible. There might

be further differentiation within an activity.

Could be refined into unit testing, integration

testing, acceptance testing, and regression

testing. While, in principle, the granularity of the

definition of a task is flexible, we have to keep

our model reasonable in size. Data related to

features f(n).

A. Resources

 Human resources (e.g., different types of

developers, analysts, external collaborators, etc.)

are intended to perform the tasks needed to

create the features. For each individual task task

(n, q) of type q necessary to provide feature f(n),

a workload w(n, q) is defined as the effort

needed to fulfill the task. The time needed to

perform a task depends not only on the workload

but also on the productivity of the developer

assigned to this task nonhuman resources (e.g.,

capital) are considered for each release as well.

We assume M different types of nonhuman

resources. Feature f(n) consumes an amount r(n,

m) of nonhuman resources of type m. We

introduce cap (k, m) with m =1..M and k=1..k as

the quantity of the (nonhuman) resource of type

m that is available in release k. This results in

the following capacity constraints:

∑ ∑ r(n, m). x(n, h) ≤n=1..Nh=1..k

∑ cap(h, m)h=1..k

for all m =1 and k =1..K.

A. Assignment of Tasks to Developers

 It is well known that there are major

differences in the skills and productivity of

software developers [1]. In order to

accommodate this, we introduce an average skill

level with a normalized productivity factor of

1.0 for each type of task. This allows us to

consider more or less skilled developers We

consider a pool of D developers, denoted by

dev(1)...dev (D), performing one or more types

of development activities. The productivity

factor prod(d, q) of a developer dev(d) for

performing a task of type q indicates whether the

developer is able to perform the task at all

(prod(d,q)≠0)and, if “yes,” how productively (s)

he performs that task. In order to summarize

information related to the assignment of

developers to tasks, we will later use vector u

defined as u(d,t,n,q)=1 if and only if at moment t

(t=1..t|K|) developer d(d=1..D) is working on

task(n,q) (and u(d,t,n,q)=0 otherwise).The

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100095 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 191

assignment of human resources to feature-

related tasks is illustrated in Fig. 2. For

illustrative purposes, we consider an example of

three features with three distinct tasks. A pool of

three developers is available to perform the

tasks. Each developer has different levels of

productivity for performing the individual tasks.

The three-dimensional productivity vector

indicates the relative productivity to perform

three tasks (in this order): design,

implementation, and testing. For example,

developer dev (2) having productivity vector (1,

0, 2) means that this developer is twice as

productive as an average tester (degree of

productivity with regards to testing is 2) but

cannot perform an implementation task (the

degree of productivity with regards to

implementation is 0). In Fig. 2, we can also see a

possible assignment of developers to the nine

tasks under consideration. For each developer,

the number at the arc between a developer and a

task indicates the order in which the assigned

tasks will be performed by the developers. To

look at dev (2) again, the first task is the design

for feature f(3), followed by testing for

f(3).Finally, testing for f(2) is done. To illustrate

the impact of varying productivity values, we

consider the estimated workload for task (1, 3)

to be W (1,3)=10 person days. Then, developer

dev (3) would need 10 days to perform the tasks.

As the productivity of developer dev (2) for the

task of testing is assumed to be 2, the same task

when performed by this developer would take

only five days. The best possible assignment

takes into account the productivity of the

developers, their availability, and the possible

dependencies between tasks.

IV. OVERALL PROBLEM STATEMENT

 We describe a release plan x and the

associated resource allocation u by the

combined vector (x, u). We also use the terms

“assignment” for x and “detailed schedule” for

u. The composite set of all feasible

assignments and detailed schedules1 (x, u) is

denoted by the Cartesian product X, Uor just

(X, U). We note that the part of the problem

related to detailed schedules does not directly

influence the stated objective of planning but

is part of the constraint set that needs to be

fulfilled. We can say that the schedule

“enables” the features. The objective is to

maximize the stated utility function F, which is

based on the value parameters v (n, k)

introduced in Section 2.1.2. The problem

ANTRASORP is formally stated as Maximize

{F(x)=

∑ ∑ v(n, k). x(n, k)subject to (x, u) ∈k=1..Kn=1..N

(X, U)}

V. SOLUTION APPROACH

Two-Phase Problem Solution Approach

An Overview
Given the analysis of the problem’s complexity, we

have concluded that we need a specialized solution

approach for ANTRASORP. Our two-phase

approach, called ANTRASORP OPTIMIZE, combines

the strength of special structure integer linear

programming (Phase 1) with the power of GAs

(Phase 2). The advantage is twofold. First, from

Phase 1, we can generate an upper bound for the

maximum value achievable. This allows an

evaluation of the solution generated in Phase 2.

Second, the solution obtained from Phase 1 is used

to restrict the set (permutations of N features) to

the set used in the GA of Phase 2. This can

significantly reduce the computational effort and

allows solution of problems of small and medium

size. Phase 2 can be applied without application of

Phase 1, but the search space would be

substantially larger in this case. The restriction

provided by Phase 1 is heuristic in its nature. That

means that it is likely that (reduced search space)

contains a good solution. However, there is no

guarantee that it necessarily contains the optimal

solution. We will call the direct application of GA

to ANTRASORP unfocused search (UFS), while the

two-phase method OPTIMIZE ANTRASORP is also

called focused search (FS) (when focusing on the

search strategy).

Phase 1

To facilitate the process of solving (4), we initially

consider a simplified version of ANTRASORP

Instead of looking at all t (K) possible points of

time t (t =1..t(K)) for scheduling tasks, in

ANTRASORP, we only look at release dates t(k)

(k=1..K). This leads to a significant reduction of

variables and constraints. To formally describe this

simplified problem, we use the variables y(d, k, n,

q) instead of variables u(d, t, n, q) Vector u is

larger in size than y. The reason for that is that u is

defined for each point in time instead of just the

release dates t(k) (k=1..K). More specifically, y is

defined as y(d, k, n, q)=1 if and only if task(n,q) is

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100095 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 192

assigned to developer d and is finished in release k

(and y(d, k, n, q)=0 otherwise).

Phase 2 The main idea of Phase 2 is that the

optimal or at least a near-optimal solution of the

complete ANTRASORP problem can be obtained

from the relaxed version ANTRASORP . That means

that we take solution x1 and try to adjust it to fulfill

the additional constraints. In Phase 2, we use a GA

[5] to search for the best solution for assigning

human resources to the tasks of the features chosen

for release. Cartesian Genetic Programming was

originally developed by Miller and Thomson

[11][12] for the purpose of evolving digital circuits

and represents a program as a directed graph. For a

solution x1 obtained from Phase 1, we define sets

of indices of features belonging to the same release.

An ACOG is differ from that algorithm given in

reference [6]. (ACO) Swam intelligence framework

inspired by the behavior of ants during food search

in nature. ACO minimizes the indirect

communication strategy employed by real ants

mediated pheromone trails.

1.Most important and riskier requirements are

anticipated .

 Maximize =∑ [𝑠𝑐𝑜𝑟𝑒𝑁
𝑖=1 (𝑝 − 𝑥i+1)-riski.xi].yi

 Score = ∑ [𝑤𝑗. 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑐𝑗. 𝑥𝑖)]𝑀
𝑖=1 .

2. Cost and precedence constraints

 X0 ≤ Xa Ɐ (ra→rb).where ra ,rb

R. ∑ (𝐶𝑂𝑆𝑇𝑖𝑁
𝑖=1 . Fi) ,k budget releasek, Ɐ k

{1,…..p}.

Daemon actions can be used to implement

centralized actions which cannot be performed by

single ants, such as the invocation of a local

optimization procedure, or the update of global

information to be used to decide whether to bias the

search process from a non-local perspective

[9][10].

Problem encoding:

The problem will be encoded as a directed graph

.G= (V,E) ,where E= Em+E0 , with Em representing

mandatory moves and E0 representing optional

ones.

i. Each vertex in V represents a requirement.

ii. A directed mandatory edge (Ti ,Tj) ∈ Em , if (ri rj);

iii. A directed optional edge (Ti , Tj) E0 if

(Ti ,Tj) ¢ Em , and i j.

Overall - costi= costi if requirement ri has no

precedent requirements.

Overall - costi= costi +∑ overall – cost j

and (ri rj) for all unvisited requirements where

m and_ visk(i)={rj/(ri, rj) ∈ Em and visitedj = false}

opt-visk(i) ={rj/(ri, rj) ∈ E0,effort(k)+overall_costj

budgetrelease and visitedj=false} overall

initialization

count 1

main loop

Repeat

 Aw Algorithm

Count++

Until count > Max.count

Return best _planning

ACO Algorithm

main loop initialization

Single Release planning loop

main loop finalization

for all vertices ri ∈ v, visitedi false

for all vertices ri ∈ v, current_planning; ←0

//finds a new release planning {current planning}//

Ifcurrent_planningeval ()>best.planning.eval ()

then

best_planning current planning

single release planning loop

 for each release, k

Randomly place ant k in a

vertex ri v, where

Visited false and overall _cost; budjet release k

ADDS (0,k)

While opt_visk(i) 0 DO

Move ant k to a vertex rj opt_ visk (i) with

probability Pij
k

ADDs(rj,k)

i j

The probability distribution is specified as follows.
For ant k, the probability of moving from state t to

state n depends on the combination of two values
[11] the attractiveness of the move, as computed by
some heuristic indicating the priori desirability of
that move. the trail level of the move, indicating
how proficient it has been in the past to make that

particular move: it represents therefore an a
posteriori indication of the desirability of that move
For example, the emerging structures in the case of
foraging in ants include spatiotemporally organized

networks of pheromone trails [14][15][16].

ACOG Algorithm

 An ACOG is differ from that algorithm given

in reference [6],it use genetic programming to

enhance performance .It consists of two main

sections : initialization and a main loop, where Gp is

used in the second sections .The main loop runs for

a user defined number of iterations .these are

described below:

Initialization :

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100095 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 193

a. Set initial parameters that are system:

variable, states, function, input, output, Input

trajectory, output trajectory

b. Set initial pheromone trails value .

c. Each ant is individually placed on initial

state with empty memory.

While termination conditions not meet do

a. Construct Ant solution:

Each ant constructs a path by successively applying

the transition function the probability of moving

from state to state depend on: as the attractiveness

of the move , and the trail level of the move.

b. Apply Local search

c. Best Tour check

If there is an improvement, update it.

d. Update Trails :

Evaporate a fixed proportion of the pheromone on

each road . For each ant perform the “ant -cycle”

pheromone update. Reinforce the best tour with a

set number of “elitist ants” performing the “ant –

cycle”,Create a new population by applying the

following operation, based on pheromone trails.

The operations are applied to the individual(s)

selected from the population with a probability

based on fitness.

 Darwinian Reproduction

 Structure –Preserving crossover

 Structure –Preserving Mutation

End While

VI. CONCLUSION

Since Ant colony algorithm may produce redundant

states in the graph, it’s better to minimize such

graphs to enhance the behavior of the inducted

system. A colony of ants moves through system

states X, by applying Genetic Operations. By

moving, each ant incrementally constructs a

solution to the problem when an ant completes

solution, or during the construction phase, the ant

evaluates the solution and modifies the trail value

on the components used in its solution. Ants

deposit a certain amount of pheromone on the

components; that is, either on the vertices or on the

edges that they traverse. The amount of pheromone

deposited may depend on the quality of the solution

found. Subsequent ants use the pheromone

information as a guide toward promising regions of

the search space. Ants adaptively modify the way

the problem is represented and perceived by other

ants, but they are not adaptive themselves. The

genetic programming paradigm permits the

evolution of computer programs which can perform

alternative computations conditioned on the

outcome of intermediate calculations, which can

perform computations on variables of many

different types, which can perform iterations and

recursions to achieve the desired result, which can

define and subsequently use computed values and

sub-programs, and whose size, shape, and

complexity.

REFERENCE

[1] Acuria, N.Juristo, and A.M.Moreno,

‘Emphasizing Human capabilities in Software

Development, “IEEE software, vol. 23, no.

2,pp.94-101,Mar./Apr.2006.

[2]G.Meyers,”A controlled Experiments in

program Testing and code Walkthroughs

/Inspections, ” comm., ACM, vol.21, pp.760-768,

1978.

[3]j.van Gurp,J.Bosh and M.Svahnberg,” Managing

Variability in Software Product

Lines”,Pro.Landelijk Architecture Congers ,2000

[4] G. Ruhe and A. Ngo-The, “Hybrid Intelligence

in Software Release Planning,” Hybrid Intelligent

System, vol.1,pp.99-110,2004.

[5] GALib, http://lancet.mit.edu/ga/, 2008.

Technique, IEEE computational intelligence

magazine, November, 2006

[6] Nada M.A. AL-Salami, “System Evolving
using Ant Colony Optimization Algorithm “,
Journal of Computer Science 5 (5): 380-387, 2009,

ISSN 1549-3636

[7] D.Greer and G.Ruhe, “Software Release

Planning : An iterative and Evolutionary
Approach,” Information and Software
Tehnology,vol.46,pp.243-253,2004

[8] J.M J van den Akker, s. Brinkkemper,
G.Diepen,and J. Versendaal,” Software Product
Release Planning through Optimization and what-if
Analysis,” information and Software Ethnologies,
vol.50.2008,pp. 101-111,2005

[9] M. Dorigo, M. Birattari, and T. Stitzle, “Ant
Colony Optimization: Arificial Ants as a
Computational Intelligence Technique, IEEE.

[10] M. Dorigo and G. Di Caro, “The Ant Colony

Optimization meta-heuristic”, in New Ideas in

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100095 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 194

Optimization, D. Corne et al., Eds., McGraw Hill,

London, UK, pp. 11-32, 1999

[11] Nada M. A. AL-salami, Saad Ghaleb Yaseen,

“Ant Colony Optimization”, IJCSNS International

Journal of Computer Science and Network

Security, VOL.8 No.6, pp 351-357, June, 2008

[12] J. F. Miller and P. Thomson. Cartesian genetic
programming. In R. Poli, W. Banzhaf, W. B.

Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty,

editors, Genetic Programming, Proceedings of
EuroGP’2000, volume 1802 of LNCS, pages 121–

132, Edinburgh, 2000. Springer-Verlag

[15] Simon Harding, Julian F. Miller, Wolfgang

Banzhaf, “Self-Modifying Cartesian Genetic
Programming”, GECCO’07, July 7–11, 2007,

ACM 978-1-59593-697-4/07/0007, pp: 1021-1028

[16] J. Holland, “Adaptation in Natural and

Artificial Systems”, Ann Arbor: University of

Michigan Press, 1975.

[13] Nada M. A. AL-salami, Saad Ghaleb Yaseen,

“Ant Colony Optimization”, IJCSNS International

Journal of Computer

Science and Network Security, VOL.8 No.6, pp
351-357, June, 2008

[14] M. Dorigo and G. Di Caro, “The Ant Colony

Optimization meta-heuristic”, in New Ideas in

Optimization, D. Corne et al., Eds., McGraw Hill,

London, UK, pp. 11-32, 1999

