
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 195

SOFTWARE QUALITY MANAGEMENT – A STUDY

Rashmi Dewan, Shivangi Kukreja, Nikita Pahuja

Student, Computer Science & Engineering, Maharshi Dayanand University

Gurgaon, Haryana, India

Abstract- The intention of this paper is to provide an

overview on the subject of software project

management. The overview includes concept of

software quality. This paper also covers ISO 9126,

quality standards, software quality, measurement

technique and principles of quality management.

Through this paper we are creating awareness among

the people about this rising field of SPM. This paper

also offers a comprehensive number of references for

each concept of SOFTWARE QUALITY.

Index Terms- Customer, Functionality, Quality,

Interdependency, Software, Software Management.

I. INTRODUCTION

In the reference to software engineering, software

quality introduces two related but distinct concepts

that exist wherever quality is defined in a business

context:

 Depending upon the functional requirements or

specifications, software functional quality

reflects how well it adheres to a given design.

This attribute can relate to as the fitness for of a

piece of software or how it compares to

opponents in the marketplace as a beneficial

product.

 Software structural quality is the degree to which

the software was produced correctly. It also

implies how it meets the non-functional

requirements which support the delivery of the

functional requirements-for example robustness

and maintainability.

The functional quality of software is measured and

enforced through software testing. On the other hand

the structural quality is assessed in accordance with

the analysis of the software inner structure and its

source code at the unit level, the system level and the

technology level.

ISO 9126-3 and the subsequent ISO 25000:2005

quality models, which is also known as Square,

defines the classification, structure and the

terminology of attributes and the metrics that are

applicable to software quality management.

The Consortium for IT Software Quality (CISQ) has

defined the following five major desirable structural

characteristics needed by software piece to stand up

to business value:

1) Security

2) Maintainability

3) Efficiency

4) Reliability

5) Size(adequate)

The extent to what a software or a system rates along

each of the above five dimensions is expressed by the

Software Quality Measurement.

II. MOTIVATION

"A science is as mature as its measurement tools,"

(Louis Pasteur in Ebert Dumke, p. 91). Software

Quality measurement is motivated by following 2

reasons:

 Risk Management: Software failures and

errors have caused more inconvenience and

fatalities respectively. These causes have

ranged from poorly designed user interfaces

to direct programming errors. This requires

for the development of embedded software
in medical and other devices that regulate

critical infrastructures. Engineers writing

embedded software assume Java programs

stalling for one third of a second to perform

garbage collection, update the user interface

and they visualize airplanes falling out of

the sky.

The Aircraft Certification Service within the

Federal Aviation Administration (FAA) is

located in the United States. It provides

software programs, guidance, policy,

training and focus on software and complex

electronic hardware that has an effect on the

airborne product which may be an aircraft,

an engine or a propeller.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Quality_%28business%29
http://en.wikipedia.org/wiki/Product_%28business%29
http://en.wikipedia.org/wiki/Software_quality#CITEREFEbertDumke

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 196

 Cost Management: An application that has

good structural software quality will cost

less. It is easier to understand and maintain

such an application as in any other fields.

Industry statistics reveal that a poor

application structural quality results in

expense and schedule overruns and creates

trash in the form of rework. Such core

applications are Enterprise Resource

Planning, Customer Relationship

Management. However, an application that

has poor structural quality is correlated with

high-impact business disruptions due to

corrupted data, application outages and

performance problems.

Moreover, the distinction between measuring and

improving software quality in business software, with

emphasis on maintenance and cost and in embedded

software, with emphasis on risk management has

become irrelevant.

Embedded systems include a user interface and the

designs are much concerned with issues that affect

user productivity and interfaces.

Nowadays, both the types of software use multi-

layered technology stacks and complex architecture,

therefore software quality analysis and measurement

have to be managed in a comprehensive and

consistent manner.

III. ISO 9126

ISO/IEC 9126 for Software engineering i.e. Product

quality is an international standard for evaluation of

software. The standard has been replaced by ISO/IEC

25010:2011. The major objective of the ISO/IEC

9126 standard is to address some of the well-known

human biases that can affect the delivery and

perception of a software development project in an

adverse manner.

The biases include changing priorities after start of

the project or not having any clear definition of

"success." Then by agreeing on the project priorities

and then converting abstract priorities (compliance)

to measurable values (output data can be validated

against schema X with zero intervention), ISO/IEC

9126 tries to advance a common understanding of the

project's objectives and goals.

A. Quality Models Of ISO 9126

The quality model presented in standards of

ISO/IEC 9126-1, distinguishes software quality

in a structured set of characteristics and sub-

characteristics:

 Functionality – It is a set of attributes that

can bear the existence of a set of functions

and their specified properties. These

functions are those that satisfy stated or

implied needs.

 Suitability

 Accuracy

 Interoperability

 Security

 Functionality Compliance

 Reliability – It is a set of attributes that

bear the capability of software to maintain

its level of performance under stated

conditions for a stated period of time.

 Maturity

 Fault Tolerance

 Recoverability

 Reliability Compliance

 Usability – It is a set of attributes that bear

the effort needed for use and on the

individual assessment of such use by a

stated or implied set of users.

 Understandability

 Learnability

 Operability

 Attractiveness

 Usability Compliance

 Efficiency – It is a set of attributes that bear

the relationship between the level of

performance of the software and the amount

of resources used under stated conditions.

 Time Behavior

 Resource Utilization

 Efficiency Compliance

 Maintainability – It is a set of attributes

that bear the effort needed to make specified

modifications.

 Analyzability

 Changeability

 Stability

 Testability

 Maintainability Compliance

 Portability – It is a set of attributes that

bear the ability of software to be transferred

from one environment to another.

 Adaptability

 Install ability

 Co-Existence

 Replace ability

 Portability Compliance

Each sub-characteristic (e.g. adaptability) is

further divided into attributes. An entity in

software product that can be verified and

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 197

measured is called as an Attribute. As they

vary between different products, they are not

defined in the standard. Software product

encompasses executables, source code,

architecture and descriptions. For

organizations to define a quality model for a

software product, the above standard

provides a framework. However, by doing

so every organization can precisely specify

its own model. This can be done by

specifying the target values for quality

metrics.

B. Internal Metrics Of ISO 9126

The metrics which do not rely on

software execution, static measure are

known as Internal Metrics.

C. External Metrics Of ISO 9126

The metrics which are applicable to

running software are External Metrics.

D. Quality In Use Metrics Of ISO 9126

When the final product is used in real

conditions then the Quality in use metrics

come into existence. The quality in use is

determined by the external quality and

external quality is determined by the internal

quality. This method of determination is

derived from the GE Model, Presented by

McCall et al. in 1977.

Following are the three types of Quality

Characteristics:

 Factors (To specify): They describe

the external view of the software,

as viewed by the users.

 Criteria (To build): They describe

the internal view of the software, as

seen by the developer.

 Metrics (To control): They are

defined and used to provide a scale

and method for measurement.

ISO/IEC 9126 distinguishes between a

defect and nonconformity. A defect being

the nonfulfillment of intended usage

requirements, whereas a nonconformity is

the nonfulfillment of specified requirements.

A similar divergence is made between

validation and verification which is known

as V&V in the testing trade.

IV. QUALITY STANDARDS

 The Quality Management

System(QMS) standards was designed

by the International Organization for

Standardization(ISO) in 1987.These

standards were a series of standards i.e

ISO 9000:1987 comprising of ISO

9001:1987,ISO 9002:1987 and ISO

9000:1987.They were applicable in

different types of industries which are

based on the type of activity or process

designing, production and service of

delivery.

 The International Organization for

Standardization reviews the standards

every few years. The 1994 version was

called the ISO 9000:1994 series which

comprised the ISO 9001:1994, ISO

9002:1994 and ISO 9003:1994 versions.

 The last revision done in the year 2008

gave the series a name ISO 9000:2000

series. A certified standard i.e ISO

9001:2000 is an integrated version of

the ISO 9002 and 9003 standards.

 A minor revision was released by ISO

named ISO 9001:2008 on October 14,

2008. This standard does not contain

any new requirements. Most of the

changes that were made were to

improve the consistency in grammar

which further made translation of the

standard into other languages possible.

 The performance improvement

guidelines over and above the basic

standard ISO 9001:2000 are provided

by the ISO 9004:2009 document. The

standard further provides a framework

for improved quality management that

is similar to and based upon the

measurement framework for process

assessment.

 The standards for quality management

are created by ISO and are to certify the

processes also the organizations system.

The product quality or service is not

certified by ISO 9000 standards.

 ISO 22000 Standard was released in

2005 by the International Organization

for Standardization which meant for the

food industry.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 198

 ISO 22000 includes the principles and

values of ISO 9000 and the HACCP

standards. This is the only integrated

standard released for the food industry

and will become popular in coming

years.

V. SOFTWARE QUALITY MEASUREMENT

TECHNIQUE

Quantification to what extent the system or a

software consists the desirable characteristics is

referred to Software quality measurement. This can

be done by qualitative or quantitative means or by

using the both. In both the cases, for every desirable

characteristic, there exists a set of measurable

attributes. The existence of these attributes which

tend to be correlated and associated with this

characteristic. For example, the number of target-

dependent statements in a program relates to, an

attribute associated with portability. These

measurable attributes are the "hows" that need to be

enforced to enable the "what’s" in the Software

Quality definition, which are précised using the

Quality Function Development approach.

The attributes and metrics that are applicable to

software quality management have been extracted

from the ISO 9126-3 and further ISO/IEC

25000:2005 quality model. Internal Structural

Quality bears the main focus. Subcategories have

been created .To handle specific areas consisting of

the business application architecture and technical

characteristics, subcategories have been devised.

Such as data access, manipulation or the notion of

transactions are technical characteristics.

An article has been published by OMG which is one

of the founding member of the Consortium for IT

Software Quality(CISQ), which says "How to Deliver

Resilient, Secure, Efficient, and Easily Changed IT

Systems in Line with CISQ Recommendations"

which states that basic code errors are 92% of the

total errors in the source code. Only 10% of the

defects are accounted by various code level issues

eventually.

A. Code-Based Analysis

Many of the existing software measures count

structural elements of the application that result from

parsing the source code for such individual

instructions (Park, 1992), tokens (Halstead, 1977),

control structures (McCabe, 1976) and objects

(Chidamber & Kemerer, 1994).

Quantification to what extent the system or a

software consists the desirable characteristics is

referred to Software quality measurement This can be

done by qualitative or quantitative means or by using

the both. In both the cases, for every desirable

characteristic, there exists a set of measurable

attributes. The existence of these attributes which

tend to be correlated and associated with this

characteristic.

The quality of structure of software is analyzed and

measured through analysis of the source code, the

architecture, the software framework, and the

database schema in relationship to the principles and

the standards that will together describe the logical

and conceptual architecture of the system. This is

distinct from the basic, local, component-level code

analysis typically performed by development tools

which are mostly concerned with implementation

considerations and are crucial during debugging and

testing activities.

B. Reliability

The main causes of the poor reliability are found in

combination of non-compliance and good

architectural and the coding practices. Measurement

of the static quality attributes of an application helps

in detecting the non-compliance. Assessing the static

attributes underlying an application’s reliability

provides an estimate of the level of business risk and

the likelihood of potential application failures and

defects the application will experience when placed

in operation.

Assessing reliability requires checks of at least the

following software engineering best practices and

technical attributes:

 Application Architecture Practices

 Coding Practices

 Complexity of algorithms

 Complexity of programming practices

 Compliance with Object-Oriented and Structured Programming

best practices (when applicable)

 Component or pattern re-use ratio

 Dirty programming

 Error & Exception handling (for all layers -

GUI, Logic & Data)

 Multi-layer design compliance

 Resource bounds management

 Software avoids patterns that will lead to

unexpected behaviors

 Software manages data integrity and

consistency

 Transaction complexity level

Depending on the application architecture and the

third-party components used (such as external

libraries or frameworks), custom checks should be

defined along the lines drawn by the above list of

best practices to ensure a better assessment of the

reliability of the delivered software.

http://en.wikipedia.org/wiki/Development_tool
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Software_testing

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 199

C. Efficiency

As with Reliability, the causes of performance

inefficiency are often found in violations of good

architectural and coding practice which can be

detected by measuring the static quality attributes of

an application. These static attributes predict

potential operational performance bottlenecks and

future scalability problems, especially for

applications requiring high execution speed for

handling complex algorithms or huge volumes of

data.

Assessing performance efficiency requires checking

at least the following software engineering best

practices and technical attributes:

 Application Architecture Practices

 Appropriate interactions with

expensive and/or remote resources

 Data access performance and data

management

 Memory, network and disk space

management

 Coding Practices

 Compliance with Object-Oriented

and Structured Programming best

practices (as appropriate)

 Compliance with SQL

programming best practices

D. Security

Poor coding and architectural practices such as SQL

injection or cross-site scripting result in most security

vulnerabilities. The lists maintained by CWE and the

SEI/Computer Emergency Center (CERT) at

Camegie Mellon University consist of these

vulnerabilities.

Assessing security requires at least checking the

following software engineering best practices and

technical attributes:

 Application Architecture Practices

 Multi-layer design compliance

 Security best practices (Input

Validation, SQL Injection, Cross-

Site Scripting, etc.)

 Programming Practices (code level)

 Error & Exception handling

 Security best practices (system

functions access, access control to

programs)

E. Maintainability

Maintainability includes concepts of modularity,

understandability, changeability, testability,

reusability, and transferability from one development

team to another. These do not take the form of critical

issues at the code level. Rather, poor maintainability

is typically the result of thousands of minor

violations with best practices in documentation,

complexity avoidance strategy, and basic

programming practices that make the difference

between clean and easy-to-read code vs. unorganized

and difficult-to-read code.

Assessing maintainability requires checking the

following software engineering best practices and

technical attributes:

 Application Architecture Practices

 Architecture, Programs and Code documentation

embedded in source code

 Code readability

 Complexity level of transactions

 Complexity of algorithms

 Complexity of programming practices

 Compliance with Object-Oriented and

Structured Programming best practices (when

applicable)

 Component or pattern re-use ratio

 Controlled level of dynamic coding

 Coupling ratio

 Dirty programming

 Documentation

 Hardware, OS, middleware, software

components and database independence

 Multi-layer design compliance

 Portability

 Programming Practices (code level)

 Reduced duplicated code and functions

 Source code file organization cleanliness

Maintainability is closely related to Ward

Cunningham's concept of technical debt, which is an

expression of the costs resulting of a lack of

maintainability. Reasons for why maintainability is

low can be classified as reckless vs. prudent and

deliberate vs. inadvertent, and often have their origin

in developers' inability, lack of time and goals, their

carelessness and discrepancies in the creation cost of

and benefits from documentation and, in particular,

maintainable source code.

F. Size

Measuring software size requires that the whole

source code be correctly gathered, including database

structure scripts, data manipulation source code,

component headers, configuration files etc. There are

essentially two types of software sizes to be

measured, the technical size (footprint) and the

functional size:

 There are several software technical sizing

methods that have been widely described. The

most common technical sizing method is number

of Lines Of Code (#LOC) per technology,

number of files, functions, classes, tables, etc.,

http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_Sizing

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 200

from which backfiring Function Points can be

computed;

 The most common for measuring functional size

is Function Point Analysis. Function Point

Analysis measures the size of the software

deliverable from a user’s perspective. Function

Point sizing is done based on user requirements

and provides an accurate representation of both

size for the developer/estimator and value

(functionality to be delivered) and reflects the

business functionality being delivered to the

customer. The method includes the identification

and weighting of user recognizable inputs,

outputs and data stores. The size value is then

available for use in conjunction with numerous

measures to quantify and to evaluate software

delivery and performance (Development Cost

per Function Point; Delivered Defects per

Function Point; Function Points per Staff

Month.).

The Function Point Analysis sizing standard is

supported by the International Function Point Users

Group (IFPUG). It can be applied early in the

software development life-cycle and it is not

dependent on lines of code like the somewhat

inaccurate Backfiring method. The method is

technology agnostic and can be used for comparative

analysis across organizations and across industries.

Since the inception of Function Point Analysis,

several variations have evolved and the family of

functional sizing techniques has broadened to include

such sizing measures as COSMIC, NESMA, Use

Case Points, FP Lite, Early and Quick FPs, and most

recently Story Points. However, Function Points has

a history of statistical accuracy, and has been used as

a common unit of work measurement in numerous

application development management (ADM) or

outsourcing engagements, serving as the "currency"

by which services are delivered and performance is

measured.

One common limitation to the Function Point

methodology is that it is a manual process and

therefore it can be labor-intensive and costly in large

scale initiatives such as application development or

outsourcing engagements. This negative aspect of

applying the methodology may be what motivated

industry IT leaders to form the Consortium for IT

Software Quality focused on introducing a

computable metrics standard for automating the

measuring of software size while the IFPUG keep

promoting a manual approach as most of its activity

rely on FP counters certifications.

CISQ announced the availability of its first metric

standard, Automated Function Points,to the CISQ

membership, in CISQ Technical. These

recommendations have been developed in OMG's

Request for Comment format and submitted to

OMG's process for standardization.

G. Identifying Critical Programming Errors

Critical Programming Errors are specific architectural

and/or coding bad practices that result in the highest,

immediate or long term, business disruption risk.

These are quite often technology-related and depend

heavily on the context, business objectives and risks.

Some may consider respect for naming conventions

while others – those preparing the ground for a

knowledge transfer for example – will consider it as

absolutely critical.

Critical Programming Errors can also be classified

per CISQ Characteristics. Basic example below:

 Reliability

o Avoid software patterns that will lead

to unexpected behavior (Uninitialized

variable, null pointers, etc.)

o Methods, procedures and functions

doing Insert, Update, Delete, Create

Table or Select must include error

management

o Multi-thread functions should be

made thread safe, for instance servlets

or struts action classes must not have

instance/non-final static fields

 Efficiency

o Ensure centralization of client

requests (incoming and data) to

reduce network traffic

o Avoid SQL queries that don’t use an

index against large tables in a loop

 Security

o Avoid fields in servlet classes that are

not final static

o Avoid data access without including

error management

o Check control return codes and

implement error handling

mechanisms

o Ensure input validation to avoid

cross-site scripting flaws or SQL

injections flaws

 Maintainability

o Deep inheritance trees and nesting

should be avoided to improve

comprehensibility

o Modules should be loosely coupled

(fanout, intermediaries,) to avoid

propagation of modifications

o Enforce homogeneous naming

conventions

http://en.wikipedia.org/wiki/Function_Point
http://en.wikipedia.org/wiki/Function_Point_Analysis
http://en.wikipedia.org/wiki/Uninitialized_variable
http://en.wikipedia.org/wiki/Uninitialized_variable
http://en.wikipedia.org/wiki/Apache_Struts

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 201

VI. PRINCIPLE OF QUALITY MANAGEMENT

 The International Standard for Quality

management (ISO 9001:2008) adopts a number

of management principles that can be used by

top management to guide their organizations

towards improved performance.
A. Customer Focus

Since the organizations depend on their

customers, they should understand current

and future customer needs, should meet

customer requirements and should try to

exceed the expectations of customers. An

organization attains customer focus when all

people in the organization know both the

internal and external customers and also

what customer requirements must be met to

ensure that both the internal and external

customers are satisfied.

B. LEADERSHIP

Leaders of an organization establish unity of

purpose and direction of it.They should go

for creation and maintenance of such an

internal environment, in which people can

become fully involved in achieving the

organization's quality objective.

C. INVOLVEMENT OF PEOPLE

People at all levels of an organization are the

essence of it. Their complete involvement

enables their abilities to be used for the

benefit of the organization.

D. PROCESS APPROACH

The desired result can be achieved when

activities and related resources are managed

in an organization as a process.

E. SYSTEM APPROACH TO MANAGEMENT

An organization's effectiveness and

efficiency in achieving its quality objectives

are contributed by identifying,

understanding and managing all interrelated

processes as a system. Quality Control

involves checking transformed and

transforming resources in all stages of

production process.

F. CONTINUAL IMPROVEMENT

The permanent quality objective of an

organization should be the continual

improvement of its own overall

performance, leveraging clear and concise

PPMs (Process Performance Measures).

G. FACTUAL APPROACH TO DECISION

MAKING

Data analysis and information form the basis

of Effective decisions.

H. MUTUALLY BENEFICIAL SUPPLIER

RELATIONSHIPS

The above mentioned eight principles form

the basis for the quality management system

Standard i.e ISO 9001:2008. Since the

organization and suppliers are

interdependent, therefore, a mutually

beneficial relationship between them

increases the ability of both to add value.

VII. SUMMARY

Software quality is a branch of study and practice

which outlines the advantageous attributes of

software products.

There are two approaches to software quality that are

prevalent:

 Defect Management Approach

Any failure to address end user requirements

is regarded as Software Defect. The

common defects can be missed or

misunderstood requirements and the errors

in software design, functional logic, data

relationships, validity checking, process

timing and coding and so on.

The defect management approach progresses

by counting and managing defects. Herein

the defects are categorized by severity and

the numbers from every category are used

for planning. Tools such as Defect Leakage

Matrices-for counting the number of defects

that pass through development phases prior

to detection are used by more mature

software development organizations. Also

the control charts are used to measure and

improve the development process capability.

 Quality Attributes Approach

The above approach to quality of software is

best This approach to software quality is

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100096 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 202

best represented by fixed quality models

which are as ISO/IEC 9126. The ISO/IEC

9126 defines six quality characteristics-each

composed of sub-categories:

o Functionality

o Reliability

o Usability

o Efficiency

o Maintainability

o Portability

ACKNOWLEDGMENTS

We would like to thank our guides for their timely

help, giving interesting ideas and encouragement to

finish this research work successfully.

SIDE BAR

Comparison: Comparison is an act of assessment

or evaluation of things simultaneously in order to

analyze, exactly to what extent they are similar or

different. It is used to draw the comparison between

two things of same type mostly to discover essential

features or meaning either scientifically or otherwise.

Content: The amount of things contained in

something. Content are those things written or

spoken in a book, an article, a programme, a speech

and so on.

REFERENCES

1) CISQ 2009 Executive Forums Report

2) McConnell, Steve (1993), Code Complete (First

ed.), Microsoft Press]

3) Crosby, P., Quality is Free, McGraw-Hill, 1979

4) DeMarco, T., Management Can Make Quality

(Im)possible, Cutter IT Summit, Boston, April

1999

5) Weinberg, Gerald M. (1992), Quality Software

Management: Volume 1, Systems Thinking, New

York, NY: Dorset House Publishing, p. 7

6) Weinberg, Gerald M. (1993), Quality Software

Management: Volume 2, First-Order

Measurement, New York, NY: Dorset House

Publishing, p. 108

7) http://www.omg.org/CISQ_compliant_IT_Syste

msv.4-3.pdf

8) Park, R.E. (1992). Software Size Measurement:

A Framework for Counting Source Statements.

(CMU/SEI-92-TR-020). Software Engineering

Institute, Carnegie Mellon University

9) Halstead, M.E. (1977). Elements of Software

Science. Elsevier North-Holland.

10) Chidamber, S. & C. Kemerer. C. (1994). A

Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 20 (6),

476-493

11) Nygard, M.T. (2007). Release It! Design and

Deploy Production Ready Software. The

Pragmatic Programmers.

12) Martin, R. (2001). Managing vulnerabilities in

networked systems. IEEE Computer.

13) Boehm, B., Brown, J.R., Kaspar, H., Lipow, M.,

MacLeod, G.J., & Merritt, M.J. (1978).

Characteristics of Software Quality. North-

Holland.

14) "CWE - Common Weakness Enumeration".

Cwe.mitre.org. Retrieved 2013-10-18.

15) "CWE's Top 25". Sans.org. Retrieved 2013-10-

18.

RELATED REFERENCE

1. Rose, Kenneth H. (July 2005). Project

Quality Management: Why, What and How.

Fort Lauderdale, Florida: J. Ross Publishing.

p. 41. ISBN 1-932159-48-7.

2. Paul H. Selden (December 1998). "Sales

Process Engineering: An Emerging

Quality Application". Quality Progress:

59–63.

3. Quality Management Strategy, May 2010.

4. Cianfrani, Charles A.; West, John E. (2009).

Cracking the Case of ISO 9001:2008 for

Service: A Simple Guide to Implementing

Quality Management to Service

Organizations (2nd ed.). Milwaukee:

American Society for Quality. pp. 5–�“7.

ISBN 978-0-87389-762-4.

5. Westcott, Russell T. (2003). Stepping Up To

ISO 9004: 2000 : A Practical Guide For

Creating A World-class Organization. Paton

Press. p. 17. ISBN 0-9713231-7-8.

6. "Taking the First Step with PDCA". 2

February 2009. Retrieved 17 March 2011.

7. "Object Oriented Quality Management, a

model for quality management.". Statistics

Netherlands, The Hague. 2009-04-29.

8. http://ssrn.com/abstract=1488690 "Thareja"

Thareja P(2008), "Total Quality

Organization Thru’ People, Each one is

Capable", FOUNDRY, Vol. XX, No. 4,

July/Aug 2008

9. "ISO 9001 Quality Management System

QMS Certification". Indian Register Quality

Systems. Retrieved 13 March 2014.

10. Littlefield, Matthew; Roberts, Michael (June

2012). "Enterprise Quality Management

Software Best Practices Guide". LNS

Research Quality Management Systems: 10.

http://www.it-cisq.org/cisqwiki/images/8/87/CISQ_2009_Executive_Forums_Report.pdf
http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf
http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf
http://cwe.mitre.org/
http://www.sans.org/top25-programming-errors/
http://books.google.com/?id=b5F08Z0QRosC&pg=PA41&dq=Quality+management+quality+planning+quality+control#v=onepage&q=Quality%20management%20quality%20planning%20quality%20control&f=false
http://books.google.com/?id=b5F08Z0QRosC&pg=PA41&dq=Quality+management+quality+planning+quality+control#v=onepage&q=Quality%20management%20quality%20planning%20quality%20control&f=false
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-932159-48-7
http://www.pmhut.com/quality-management-strategy
http://books.google.com/?id=-XtbQNGhGmMC&pg=PA5&dq=quality+management+eight+principles+ISO+9001:2008#v=onepage&q=quality%20management%20eight%20principles%20ISO%209001%3A2008&f=false
http://books.google.com/?id=-XtbQNGhGmMC&pg=PA5&dq=quality+management+eight+principles+ISO+9001:2008#v=onepage&q=quality%20management%20eight%20principles%20ISO%209001%3A2008&f=false
http://books.google.com/?id=-XtbQNGhGmMC&pg=PA5&dq=quality+management+eight+principles+ISO+9001:2008#v=onepage&q=quality%20management%20eight%20principles%20ISO%209001%3A2008&f=false
http://books.google.com/?id=-XtbQNGhGmMC&pg=PA5&dq=quality+management+eight+principles+ISO+9001:2008#v=onepage&q=quality%20management%20eight%20principles%20ISO%209001%3A2008&f=false
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-87389-762-4
http://books.google.com/?id=zk-mlLY__wkC&pg=PA17&dq=ISO+9004+Focus+internal+customer+and+external+customers#v=onepage&q=ISO%209004%20Focus%20internal%20customer%20and%20external%20customers&f=false
http://books.google.com/?id=zk-mlLY__wkC&pg=PA17&dq=ISO+9004+Focus+internal+customer+and+external+customers#v=onepage&q=ISO%209004%20Focus%20internal%20customer%20and%20external%20customers&f=false
http://books.google.com/?id=zk-mlLY__wkC&pg=PA17&dq=ISO+9004+Focus+internal+customer+and+external+customers#v=onepage&q=ISO%209004%20Focus%20internal%20customer%20and%20external%20customers&f=false
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-9713231-7-8
http://blog.bulsuk.com/2009/02/taking-first-step-with-pdca.html
http://unstats.un.org/unsd/dnss/QAF_comments/Object%20Oriented%20Quality%20Management.pdf
http://unstats.un.org/unsd/dnss/QAF_comments/Object%20Oriented%20Quality%20Management.pdf
http://ssrn.com/abstract=1488690
http://www.irqs.co.in/quality-management-system.html
http://www.irqs.co.in/quality-management-system.html
http://en.wikipedia.org/wiki/Indian_Register_Quality_Systems
http://en.wikipedia.org/wiki/Indian_Register_Quality_Systems
http://www.lnsresearch.com/research-library/research-articles/Enterprise-Quality-Management-Software-Best-Practices-Guide
http://www.lnsresearch.com/research-library/research-articles/Enterprise-Quality-Management-Software-Best-Practices-Guide

