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Abstract- The processor-memory bandwidth in current 

generation processors is the main bottleneck due to a 

number of processor cores sharing it through the same 

bus/ processor-memory interface. As a result, the on-

chip memory hierarchy in multi core processors has 

assumed the role of one of the most important resources 

that should be managed efficiently to alleviate the above 

problem. 

Details of cache optimization methods implemented by 

the cache are also undertaken in this paper. In order to 

allay the impact of the growing gap between CPU speed 

and main memory performance, today's computer 

architectures implement hierarchical memory 

structures. The idea behind this approach is to hide 

both the low main memory bandwidth and the latency 

of main memory accesses, which is slow in contrast to 

the floating-point performance of the CPUs. Usually, 

there is a small and expensive high speed memory 

sitting on top of the hierarchy which is usually 

integrated within the processor chip to provide data 

with low latency and high bandwidth; i.e., the CPU 

registers. Effective utilization of this resource is 

therefore an important aspect of memory hierarchy 

design of multi core processors. This is currently an 

important area of research with a large number of 

research publications that have proposed a number of 

techniques to solve the problem. These include novel 

techniques that were not used earlier either in single 

core processors or the conventional multiprocessors. 

This paper presents a survey of all such techniques 

proposed in recent publications. Thus, going through 

this paper one will end up with a good understanding of 

cache and its Optimizing techniques. 

 
Index Terms- On-chip cache hierarchy; cache 

optimizations; NUCA cache; prefetching; victim cache; 

chip multiprocessors. 
 

 

 
I. INTRODUCTION 

The on-chip memory and its effective utilization in 

multi core processors is the prime focus of this paper. 

With the increasing number of cores on a single chip, 

this strategy will determine the overall memory 

performance and hence the performance of the 

applications running on such systems. The workload 

running on these systems is a mix of multiple 

programs or multiple processes belonging to the same 

program. The overall performance would therefore 

not only be determined from the throughput of 

multiple programs but also from the performance of 

programs comprising of multiple parallel processes 

running on multiple cores of the same chip. The on-

chip cache hierarchy needs to be designed with the 

best possible configuration and optimizations to serve 

the above purpose. 

A large number of cache optimization techniques 

have been implemented in different types of 

computer architecture. Some of the techniques have 

been successfully implemented both in single core 

processors and in conventional multiprocessors with 

a resultant improvement in performance. A detailed 

account of seventeen of these well tested techniques 

is given in Hennessy and Patterson (2006). Although 

most of the optimizations mentioned in (Hennessy, et 

al., 2006) have been implemented in single core 

processors or in conventional multiprocessors, they 

have also found their usefulness in multi core 

processors, as these are thought to be the basic 

techniques that are expected to be successful in all 

types of architecture. Some of these techniques that 

are successfully implemented in multi core 

processors are: small and simple first-level cache, 

multi-level caches, non-blocking caches, and 

prefetching of code and data through hardware and 

software techniques. In most of the Chip 

Multiprocessors (CMPs), multi-level cache consists 

of two-levels with the 

second-level cache being the main focus of 

improvements. As a result, a number of new and 

innovative techniques have been developed for this 

level of cache. Although the performance of first-

level cache is also important, the current design of 

first-level cache is considered to be almost an 

optimized one with very few innovations possible. 

But the design of second- level cache has a large 

room for improvement and is therefore the main 

focus of most of the research targeted towards its 

optimization. 

In the next section, a brief account of all cache 

optimizations implemented in multi core processors 

taken from recent publications shall be presented. 

The optimizations implemented in single core 

processors and multiprocessors that have not been 

explored for multi core processors shall be presented 

in section 3.1. Those optimizations that have been 

explored for multi core processors but were found to 

be ineffective and in some cases have caused 

degradation in the overall performance will be 

presented in section 3.2. Section 4 gives possible 

research directions and concludes this paper. 

II. MATERIALS AND METHODS  2.1 

OPTIMIZATIONS IMPLEMENTED 

SUCCESSFULLY 

A number of cache optimization techniques that were 

implemented in single core processors were 



 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY           179 
 

successfully implemented in multi core processors. 

Multi-level cache with the current structure of two-

level has been implemented since the very first multi 

core processor visualized in (Fig.1). In this 

configuration, the first-level cache is private to each 

core and coherence is maintained between them with 

MESI or MOESI protocols (Villa, F.J., et al., 2005). 

The second-level cache has been implemented with 

different design options in various architectures. In 

general, the second-level cache is shared among all 

cores with a number of optimizations to be discussed 

in this section. 

One of the major innovations in the design of the 

second- level cache is NUCA (Non Uniform Cache 

Architecture) cache (Kim, C., et al., 2003). The 

reason for building NUCA organization is that the 

second-level cache is made much larger than the 

first-level to satisfy the design requirements of multi-

level cache. The result is a slower access time with 

the increasing cache size. This problem is resolved by 

dividing 

the cache into banks. The context of a specific core is 

kept in a bank physically closer to it gaining 

improvement in the speed of access. A number of 

variants of NUCA have evolved over the last few 

years with many innovations implemented in current 

generation processors. Reactive NUCA (Hardavellas, 

N., et al., 2010) performs optimal cache block 

placement by classifying blocks at run-time and 

placing data close to the core that uses them. D-

NUCA (Kim, C., et al.., 2003) is 

 

A. Target Of Most Of The Optimizations 

L2 Cache 

another variant of NUCA architecture that 

dynamically places frequently accessed data in banks 

closer to the core and less frequently accessed blocks 

in farther banks. Thus data migration is allowed at 

run time. Other variants of NUCA are outlined in 

(Dybdahl et al., 2007, Lin et al., 2008 and Zhang et 

al., 2005). An issue that is considered to be important 

for on-chip cache hierarchy is whether there is a need 

for it to follow the property of inclusion (Hsu et al., 

2005). In order to satisfy this property, the blocks 

present in the first-level cache should be present at all 

other levels. Many researchers have pointed out that 

enforcing this property results in wastage of cache 

space, suggesting that a better cache utilization is 

achieved if this property is not made mandatory, 

especially in large scale multi core processors. 

Although this is still being debated, some earlier 

results (Jouppi et al., 1994) show improvement with 

the exclusion property in single-core, two- level 

caches. It is expected that similar results can be 

achieved in multi core processors, because the on 

chip memory is not wasted by replicating at different 

levels. The increase in the total available memory 

through the property of exclusion may ultimately 

result in better performance. 

Cache parameters such as block size, associativity, 

cache size, write policy and coherence protocols 

directly affect the performance of the on-chip 

memory hierarchy. Since different applications have 

different demands with respect to each of the above 

parameters, Tao et al. (2008) have proposed 

reconfigurable cache architecture with the parameters 

being 

transparent to application programmers who may set 

the values according to the requirements of their 

applications. Although this is difficult to achieve 

practically requiring the programmer to be 

architecture aware, the research groups working on 

such reconfigurable architectures are optimistic and 

have predicted positive results. 

A recent publication by Hammoud et al. (2010) 

outlines a novel technique called DPAP (Dynamic 

Pressure-aware Associative Placement) for cache 

blocks. This scheme decouples the mapping of 

memory blocks to cache from their physical 

addresses and places them according to their pressure 

or frequency of use. The pressure is recorded at the 

group granularity level which is later used to place an 

incoming block in a cache block that belongs to a 

group that has the minimum pressure. 

A question associated with second-level cache and 

NUCA organization is whether the cache should be 

shared or private with respect to each core. This issue 

has been explored by a number of researchers with 

conflicting results supporting the respective 

configurations. Hsu et al. (2005) has pointed out that 

for small cache designs, shared cache gives a better 

performance but for large cache designs, the 

advantage is not so significant. On the contrary, the 

study conducted by Tao et al. (2008) using various 

benchmarks show that shared L2 gives better 

performance for majority of the applications. Haakon 

and Dybdahl (2007) have proposed to implement an 

adaptive shared/private cache partitioning where the 

amount of shared space among cores is controlled 

dynamically. This shows that application dependent 

features are important to 

decide about shared/private cache configuration. The 

control for this feature remains in hardware but is 

made application- aware by coupling it with the 

counters and registers meant for recording misses and 

tags of evicted blocks. Most of the current generation 

processors are equipped with PMUs (Processor 

Monitoring Units) that provide the above 

measurements. R-NUCA (Hardavwllas, N., et al., 

2010), a variant of NUCA, deals with the above issue 

in a more formal way. It alleviates the problem of 

both private and shared cache designs with 

significant power savings by classifying blocks on 

the basis of access patterns at run time and places it 

near the requesting cores. Address mapping is 

managed through a simple lookup that saves time and 

power. 

Another improvement for multi core processors is 

more architectural support for non-blocking cache. 
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To allow maximum miss level parallelism, the Miss 

Handling Architecture (MHA) requires a number of 

additional components as proposed in (Jahre, M., et 

al., 2007). Since a higher miss-level parallelism may 

add to congestion in the access path affecting the 

overall performance, Jahre and Natvig (2007) have 

proposed that a balance is required between the miss-

level parallelism and congestion in both on- chip and 

off-chip interconnects. 

In order to improve cache space utilization, a number 

of techniques have been suggested. One such design 

option is bypassing of cache accesses that are 

transient referred to as block bypassing (Dybdahl, et 

al., 2007). Block bypassing is proposed for second-

level cache and it requires the monitoring of reuse 

behavior of cache blocks. Blocks that are classified as 

bypassed are kept only in the first-level cache. Load 

requests for bypassed blocks are used to generate an 

early miss request, improving the miss penalty. 

A strategy that is similar to reconfigurable cache 

architecture with application/ programmer 

transparent parameters is to have software controlled 

cache. This scheme allows the operating system or 

the application developer to become the software-

based cache controller and adapt the cache 

parameters according to the run-time conditions. One 

such technique is demonstrated in (Mori, et al., 2009) 

and is named Cache-Core architecture. Using 

heterogeneous multi core processor with local 

memory that can be configured as software controlled 

cache, the core that is not allocated a thread is made 

to work as a shared L2 cache managed through 

software. 

Prefetching of instructions and data has been a useful 

strategy for improving the performance of every level 

of memory hierarchy. A number of prefecthing 

strategies for the cache hierarchy are explored in 

(Tao, et al., 2008 and Ebrahimi, E., et al., 2009). 

After analyzing five prefetching schemes namely 

always prefetch, on-miss prefetch, tagged prefetch, 

stride-based prefetch and delta prefetch, it is inferred 

through supporting data that tagged prefetching is the 

most effective to reduce the miss rate (Tao, et al., 

2008). Whether this also gives the best overall 

performance is not clear and needs to be investigated. 

As pointed out in (Ebrahimi, E., et al., 2009), 

prefetching may interfere with demand fetches. This 

problem is more acute in CMPs because of multiple 

cores generating prefetch requests. This may lead to 

performance degradation that needs to be controlled. 

Ebrahimi, et al. (2009) have proposed a solution 

based on hierarchy of prefetch controls that combine 

local and global prefetcher interference to balance the 

benefits of prefetching with that of the overall system 

performance. Address correlated prefetching are 

effective for irregular access patterns that are 

repetitive. Earlier, this scheme was not practical for 

implementation because it required a large amount of 

metadata that could not be stored on processor. 

Wenisch et al. (2010) have suggested an innovative 

technique to make the off-chip storage of metadata 

practical, thus allowing the effective use of the 

scheme in current generation processors. 

Because of the growing power concerns in multi core 

processors, in-order processors are a preferred 

architecture, but this results in performance 

degradation because of stalls due to various 

dependences. This can be overcome by using iCFP 

(in-order continual flow pipeline), a technique 

proposed by Hilton et al. (2010). This technique uses 

the runahead execution mode, a mode of execution 

entered by an in-order processor when it encounters a 

miss, increasing the Miss Level Parallelism (MLP). 

All miss-dependent instructions are saved in a slice 

buffer whereas the miss-independent instructions are 

executed and retired speculatively. When the miss 

returns, it executes the instructions saved in the slice 

buffer. Hilton et al. (2010) have shown that iCFP 

improves performance of in-order processors with the 

additional advantage of low power consumption. 

Use of adaptive shared/private NUCA cache 

partitioning to improve the overall miss rate is given 

by Dybdahl and Stenström (2007). Second-level 

cache as NUCA is generally organized as per core 

partition. If a core runs out of cache space, the 

evicted block is relocated to the partition of another 

core, thus utilizing some cache space as a shared one. 

An 

uncontrolled allocation may result in performance 

degradation due to pollution. An adaptive scheme to 

dynamically control the shared space attempts to 

maximize the overall performance. This is done by 

protecting the most recently used data in the last-

level cache. An improvement in suggested in 

(Qureshi, M., 2009) through adaptive spill/receive 

policy, which is a dynamic scheme used not only to 

reduce but also to control pollution by defining 

spiller and receiver partitions. Use of Miss Rate 

Curves (MRC) for on- line optimization is proposed 

in (Tam, et al., 2009) to support the decision making 

process for the above schemes, but obtaining online 

MRC has its overhead which makes it un- practical. 

Tam et al. (2009) have proposed to obtain on-line 

efficient MRC termed as Rapid MRC through the use 

of PMUs (Processor Monitoring Units) available in 

all current generation processors. The paper 

approximates L2 MRC with low overhead and 

compares RapidMRC of 30 standard application 

benchmarks with that of real MRCs. Stack algorithm 

is a common method to generate MRC which 

maintains an LRU stack for recent memory accesses. 

The stack distance of every memory access is 

calculated to speculate for the next access to be a hit 

or a miss. A histogram Hist(dist) shows all memory 

accesses with a stack distance of dist. The number of 

misses for a memory size size, Miss(size) is 

calculated by the following expression 

This then generates an MRC that is normalized over a 

fixed probing period using MPKI (Number of Misses 
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Per Kilo Instructions), given by the following expression 

   
Fig.1 Online RapidMRC vs Offline Real MRCs. X-axis gives the allocated L2 partition in terms of the number of 

colors and Y-axis gives the resulting L2 cache miss rate (MPKI) (taken from Tam et. al.(2009)) 

where CPUInstructions is the length of the probing 

period. (Fig.2) shows the comparison of online 

RapidMRC with that of real (Offline) MRC (taken 

from (Tam, et al, 2009)). For most of the 

applications, online MRCs (RapidMRC) are close to 

real MRCs obtained offline. 

Other innovations include addition of hardware to 

enhance a previously implemented optimization. The 

LRU block replacement policy gives a poor 

performance if the working set is larger than L2. This 

is because a larger number of less reused blocks 

occupy cache space. Bypassing these less reused 

blocks with the help of less reused filter improves the 

overall performance as outlined in (Xiang, et al., 

2009). Such blocks are identified by a reuse 

frequency predictor. Adding a filter buffer to this 

optimization to temporarily save such blocks avoids 

more misses. Use of filters also reduces the overall 

coherence traffic that increases with the increase in 

the number of cores, causing congestion at various 

resources. Design and implementation of Blue 

Gene/P snoop filter, presented in (Salapura, et al., 

2008) attempts to filter snoop requests that are not in 

cache. This is augmented with streaming registers 

with a marked improvement in the overall 

performance. 

Cooperative Caching (Chang, et al., 2006) combines 

the strengths of both private and shared caching. It is 

a framework in which data used locally are kept in 

private caches and the data that are shared globally 

are kept in shared cache. Modified policies were 

simulated and experiments were conducted by Chang 

and Sohi which is summarized in (Chang, et al., 

2006). The results thus obtained were encouraging in 

terms of off-chip miss rate and local cache hit rate. 

To reduce off-chip communication latency in case of 

a miss in cache, a 3D-stacked MRAM is proposed in 

(Sun, G., et al., 2009). The implementation requires 

addition of extra hardware at the L2 cache to memory 

interface. 

III. RESULTS AND DISCUSSION 

A. Proposed Cache Optimizations 

A number of cache optimization techniques were 

successfully implemented in single core processors or 

single core multiprocessors but have not yet been 

tried in multi core processors. Some of these 

techniques are discussed in this section with a 

prediction of their effectiveness in multi core 

processors. 

Trace cache (Hennessy, et al., 2006) allows to cache 

dynamic traces of executed instructions including 

taken branches. This cache requires a branch 

predictor to dynamically decide the execution path of 

programs. A cache block is utilized more efficiently 

in a trace cache but the overall cache utilization is not 

efficient because the same instructions may be 

present in a number of blocks. Due to some 

problems, trace cache has been 

implemented in only a selected number of single core 

processors. Because it is less efficient in terms of 

power and area utilization, it may not be an effective 

mechanism for multi core processors. Moreover, the 

control of trace cache is complex that may add to the 

complexity of the overall cache control system. 

Victim cache is an optimization technique where a 

small, fully associative cache is placed between the 

cache and its refill path. The victim cache is filled 

with the blocks evicted from cache due to block 

replacement. A miss in the cache is first checked in 

the victim cache before the request is sent to the main 

memory. In a multi core processor, this technique has 

not been implemented in the same form but a similar 

technique is used in second-level NUCA caches that 

use shared/private configuration. In NUCA cache 

with partitions private to each core, when a core runs 

out of cache space and a block is evicted due to block 

replacement, instead of discarding this block totally, 

it is stored in the partition of another core in 

anticipation that it may be needed again (Dybdahl, et 

al., 2007). Although this scheme is similar to victim 

cache but it is implemented at the cost of another 

core’s cache space. Some controlled schemes have 

also been suggested in (Tam, et al., 2009), but all 

these schemes use the partition of another core. A 

better implementation would be a victim cache which 

is a small, one to four entry fully associative cache 

that helps in significant improvement in miss rate. A 

dedicated victim cache per core would also avoid 

pollution of cache partition belonging to another 

core. Since the victim cache contains recently evicted 

blocks, it shall reduce both the miss penalty and miss 

rate of the cache hierarchy. 

One major issue which has not been investigated is 

whether the cache design should always conform to 

the shared memory paradigm as this requires policies 

for coherence and consistency with an overhead that 

affects the performance of on-chip memory 

hierarchy. If the message passing paradigm is used 

for inter-core communication and sharing of data, all 
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caches will remain private to each core without 

causing interference due to coherence and 

consistency traffic. In shared memory paradigm, a 

large wait time is incurred in synchronization for 

access to shared variables. Use of message passing 

paradigm would remove the overhead of 

synchronization wait time. 

Various compiler-based optimization techniques are 

suggested by a number of researchers to improve the 

overall cache utilization (Chen, et al., 2008). These 

techniques are effective for efficient utilization of 

cache space and may be equally effective for CMPs. 

All future compilers designed for multi core 

processors should take into account the existence of 

parallelism at the chip level. Other features that need 

to be considered is that the inter core communication 

and synchronization overhead is much smaller than 

what is observed between 

processors of conventional multiprocessors. This 

advantage can be exploited in the design of compilers 

and algorithms where inter-core communication is 

more efficient than communication among 

multiprocessors in SMPs. 

Search in cache is carried out after translation from 

virtual to physical address. The translation time adds 

an overhead to all cache accesses which adds to the 

critical memory access time. A solution implemented 

in some processors is to implement virtual address 

cache. The search in these caches is done in parallel 

with the address translation process. But the solution 

was found to be complex and was not as effective 

due to high overheads for larger caches. A brief 

account of the problems of virtually addressed caches 

is given in (Hennessy, et al., 2006). A possible 

solution to some of the problems is to use small first 

level cache. Observing the design of cache hierarchy 

of multi core processors, the first-level cache is 

relatively smaller in CMPs than in single core 

processors. This technique can therefore be 

considered for implementation without the problems 

seen in single core processors. 

Use of write buffers in both write-through and write- 

back cache improves the overall memory access time. 

The number and size of write buffer is an important 

parameter that determines the effectiveness of this 

technique. An optimization to best utilize the write 

buffers is to use write merging (Hennessy, et al., 

2006). This technique allows fast write for multiple 

writes and better performance even with a smaller 

number of write buffers. The same technique can be 

applied to CMPs for effective utilization of write 

buffers. 

Most of the first-level cache is two-way set- 

associative. In order to improve the hit time of the 

cache, way prediction can be used that gives the hit 

time of a direct-mapped cache and the miss rate of a 

set associative cache (Hennessy, et al., 2006). Extra 

bits are added to each cache block to predict the way 

for next cache access. This scheme works well in 

single core processors and it can be effective and 

beneficial for multi core processors too. There is an 

additional requirement of block predictor that 

predicts the next block in the set. Only a single tag is 

compared and the multiplexer is set earlier to select 

the predicted block. With the help of accurate 

predictors, way prediction can be effective for CMPs. 

As in single core processors, pipelined access for 

first-level cache is an effective way of reducing the 

overall cache access time in multi core processors. 

This method increases the hit time of individual 

accesses to the cache but the overall effective access 

time is reduced. The penalty increases for 

mispredicted branches, a problem that can be 

overcome with the use of efficient branch predictors. 

This technique is expected to optimize the average 

cache access time of individual cores with a number 

of accesses pipelined to overlap the 

access time. DSBC (Dynamic Set Balancing Cache) 

tries to make use of an under-utilized set by 

associating it with another set in the same cache 

(Rolan, et al., 2009). Although suggested for single-

core processors, this scheme can be extended for 

multi core processors with a few modifications. 

All the cache optimization techniques that were 

discussed in this section need to be investigated by 

conducting experiments. Results inferred from such 

investigation can then be applied for future 

generation multi core processors. 

B. Ineffective Cache Optimizations 

The optimization techniques presented in Section 3.1 

needs to be implemented to determine their 

effectiveness. A few optimizations were tested for 

multi core processors and were found to be 

ineffective. As more optimizations are tested, one 

may find more such techniques as not being useful 

for multi core processors. The following paragraphs 

give a brief account of the tested techniques that were 

not successful in CMPs. 

Cache affinity is a policy decision taken by the 

operating system to schedule processes on specific 

cores. The decision is based on the behavior of a 

process that has its context in a cache and is expected 

to reuse the contents as a result of temporal locality. 

After a context switch, when a process is 

rescheduled, it is allocated to the same processor, 

assuming that its context may still be present in the 

cache, reducing the compulsory or cold start misses. 

This scheme has improved the performance in 

conventional multiprocessors (SMPs). On 

investigation of this scheme in multi core processors 

and summarized in (Kazempour, et al., 2008), it was 

observed that the performance improvement in multi 

core uniprocessors (CMPs) is not significant, but the 

performance is good in case of multi core 

multiprocessors (SMPs based on CMPs). 

Trace cache may not be an effective technique for 

multi core processors because it wastes memory 

space due to repetition of instructions in more than 

one block because it contains dynamic sequence of 
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instructions. It also has relatively higher power 

consumption. Although it is a promising technique in 

theoretical terms, it may not work for large scale 

multi core processors. 

Since a large number of optimizations that have been 

discussed in the previous sub-section have not been 

tested, this section contains very few instances. As a 

part of our PhD project, we plan to test most of the 

techniques mentioned in Section 3.1 and report the 

results in subsequent publications. 

IV. CONCLUSION AND FUTURE DIRECTIONS 

This paper forms part of the guideline for future work 

for researchers interested in optimization of memory 

hierarchy for scalable multi core processors, as it 

presents a survey of all such techniques proposed in 

recent publications. The techniques are also presented 

along with the comments about their effectiveness. A 

summary of all the optimization techniques discussed 

in this paper is presented in Table 1. 

The effect of the mechanisms and policies of 

operating system on the memory hierarchy, 

especially the on-chip cache hierarchy is another 

direction of research that can be explored. High 

coherence traffic gives rise to congestion at the first 

level cache. Directory-based coherence protocols 

may reduce 
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 Summary of All Cache Optimization 
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Optimizations (Level 1 cache) 
Trace Cache  Virtually Addressed Cache Way 

Prediction  Pipelined Cache Access 

 
Optimizations (Level 2 Cache) 
NUCA implemented 

D-NUCA implemented R-NUCA 
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Adaptive Shared/Private Cache Adaptive 

Spill/Receive Policy 

Use of MRC to support the above Block bypassing 

Cache-Core Architecture Cooperative Caching  3D 

Stacked MRAM Victim Cache 

Write Buffers with Write Merging Dynamic Set 

Balancing Cache (DSBC) 

 
Optimizations (Both L1 and L 2 Caches) 
Use Property of Exclusion  Reconfigurable 

Cache  Dynamic Pressure Aware Placement(DPAP) 

Non-Blocking Cache – MHA  Prefetching of 

Instructions and data 

Tagged Prefetch  Hierarchy of Prefetch Controls 

Address-Correlated Prefetching 

iCFP (In-order Control Flow Pipeline) Compiler-

based Optimizations  Cache Affinity 

the overall coherence traffic but this comes with the 

cost of maintaining the directory and keeping it 

updated. These and other research directions shall be 

explored in future research. 

V. ACKNOWLEDGEMENT 

This is the extended version of our own paper 

presented and published in “International Conference 

on Computer and Emerging Technologies” (ICCET 

2011) held on 22-23 April 2011 at Shah Abdul Latif 

University, Khairpur, Sindh, Pakistan. 

REFERENCES 

 

 [1] Architectural Support for Programming 

Languages and Operating Systems (ASPLOS), p.121-

132  Tao, J., M. Kunze, W. Karl, (2008),  

[2] Evaluating the Cache Architecture of Multi core 

Processors, 16th Euromicro Conference on Parallel, 

Distributed and Network-based Processing, p.12-19 

Villa, F. J., M. E. Acacio,, J. M. Garc ́ıa, (2005),  

[3]Memory Subsystem Characterization in a 16-Core 

Snoop-based Chip-Multiprocessor, Proc of the 1st 

International Conference on High Performance 

Computing and Communication (HPCC), p213-222 

Wenisch, T .F., M. Ferdman, A, Ailamaki, B. Falsafi, 

A. Moshovos, (2010),  

[4] Making Address Correlated Prefetching 

Practical, IEEE Micro, Vol. 1, p. 50-59  Xiang, L., 

T. Chen, Q. Shi, W. Hu, (2009),  

[5] Less Reused Filter: Improving L2 Cache 

Performance via Filtering Less Reused Lines, 

Proceedings of the 23rd International Conference on 

Supercomputing (ICS), p. 68-79 Zhang and 
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