
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 178

Advance Cache Memory Optimization (ACMO)

Harsh Chawla, Ashutosh Bhatt, Bibhuti Bhushan

Dronacharya College of Engineering, Gurgaon

Abstract- The processor-memory bandwidth in current

generation processors is the main bottleneck due to a

number of processor cores sharing it through the same

bus/ processor-memory interface. As a result, the on-

chip memory hierarchy in multi core processors has

assumed the role of one of the most important resources

that should be managed efficiently to alleviate the above

problem.

Details of cache optimization methods implemented by

the cache are also undertaken in this paper. In order to

allay the impact of the growing gap between CPU speed

and main memory performance, today's computer

architectures implement hierarchical memory

structures. The idea behind this approach is to hide

both the low main memory bandwidth and the latency

of main memory accesses, which is slow in contrast to

the floating-point performance of the CPUs. Usually,

there is a small and expensive high speed memory

sitting on top of the hierarchy which is usually

integrated within the processor chip to provide data

with low latency and high bandwidth; i.e., the CPU

registers. Effective utilization of this resource is

therefore an important aspect of memory hierarchy

design of multi core processors. This is currently an

important area of research with a large number of

research publications that have proposed a number of

techniques to solve the problem. These include novel

techniques that were not used earlier either in single

core processors or the conventional multiprocessors.

This paper presents a survey of all such techniques

proposed in recent publications. Thus, going through

this paper one will end up with a good understanding of

cache and its Optimizing techniques.

Index Terms- On-chip cache hierarchy; cache

optimizations; NUCA cache; prefetching; victim cache;

chip multiprocessors.

I. INTRODUCTION

The on-chip memory and its effective utilization in

multi core processors is the prime focus of this paper.

With the increasing number of cores on a single chip,

this strategy will determine the overall memory

performance and hence the performance of the

applications running on such systems. The workload

running on these systems is a mix of multiple

programs or multiple processes belonging to the same

program. The overall performance would therefore

not only be determined from the throughput of

multiple programs but also from the performance of

programs comprising of multiple parallel processes

running on multiple cores of the same chip. The on-

chip cache hierarchy needs to be designed with the

best possible configuration and optimizations to serve

the above purpose.

A large number of cache optimization techniques

have been implemented in different types of

computer architecture. Some of the techniques have

been successfully implemented both in single core

processors and in conventional multiprocessors with

a resultant improvement in performance. A detailed

account of seventeen of these well tested techniques

is given in Hennessy and Patterson (2006). Although

most of the optimizations mentioned in (Hennessy, et

al., 2006) have been implemented in single core

processors or in conventional multiprocessors, they

have also found their usefulness in multi core

processors, as these are thought to be the basic

techniques that are expected to be successful in all

types of architecture. Some of these techniques that

are successfully implemented in multi core

processors are: small and simple first-level cache,

multi-level caches, non-blocking caches, and

prefetching of code and data through hardware and

software techniques. In most of the Chip

Multiprocessors (CMPs), multi-level cache consists

of two-levels with the

second-level cache being the main focus of

improvements. As a result, a number of new and

innovative techniques have been developed for this

level of cache. Although the performance of first-

level cache is also important, the current design of

first-level cache is considered to be almost an

optimized one with very few innovations possible.

But the design of second- level cache has a large

room for improvement and is therefore the main

focus of most of the research targeted towards its

optimization.

In the next section, a brief account of all cache

optimizations implemented in multi core processors

taken from recent publications shall be presented.

The optimizations implemented in single core

processors and multiprocessors that have not been

explored for multi core processors shall be presented

in section 3.1. Those optimizations that have been

explored for multi core processors but were found to

be ineffective and in some cases have caused

degradation in the overall performance will be

presented in section 3.2. Section 4 gives possible

research directions and concludes this paper.

II. MATERIALS AND METHODS  2.1

OPTIMIZATIONS IMPLEMENTED

SUCCESSFULLY

A number of cache optimization techniques that were

implemented in single core processors were

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 179

successfully implemented in multi core processors.

Multi-level cache with the current structure of two-

level has been implemented since the very first multi

core processor visualized in (Fig.1). In this

configuration, the first-level cache is private to each

core and coherence is maintained between them with

MESI or MOESI protocols (Villa, F.J., et al., 2005).

The second-level cache has been implemented with

different design options in various architectures. In

general, the second-level cache is shared among all

cores with a number of optimizations to be discussed

in this section.

One of the major innovations in the design of the

second- level cache is NUCA (Non Uniform Cache

Architecture) cache (Kim, C., et al., 2003). The

reason for building NUCA organization is that the

second-level cache is made much larger than the

first-level to satisfy the design requirements of multi-

level cache. The result is a slower access time with

the increasing cache size. This problem is resolved by

dividing

the cache into banks. The context of a specific core is

kept in a bank physically closer to it gaining

improvement in the speed of access. A number of

variants of NUCA have evolved over the last few

years with many innovations implemented in current

generation processors. Reactive NUCA (Hardavellas,

N., et al., 2010) performs optimal cache block

placement by classifying blocks at run-time and

placing data close to the core that uses them. D-

NUCA (Kim, C., et al.., 2003) is

A. Target Of Most Of The Optimizations

L2 Cache

another variant of NUCA architecture that

dynamically places frequently accessed data in banks

closer to the core and less frequently accessed blocks

in farther banks. Thus data migration is allowed at

run time. Other variants of NUCA are outlined in

(Dybdahl et al., 2007, Lin et al., 2008 and Zhang et

al., 2005). An issue that is considered to be important

for on-chip cache hierarchy is whether there is a need

for it to follow the property of inclusion (Hsu et al.,

2005). In order to satisfy this property, the blocks

present in the first-level cache should be present at all

other levels. Many researchers have pointed out that

enforcing this property results in wastage of cache

space, suggesting that a better cache utilization is

achieved if this property is not made mandatory,

especially in large scale multi core processors.

Although this is still being debated, some earlier

results (Jouppi et al., 1994) show improvement with

the exclusion property in single-core, two- level

caches. It is expected that similar results can be

achieved in multi core processors, because the on

chip memory is not wasted by replicating at different

levels. The increase in the total available memory

through the property of exclusion may ultimately

result in better performance.

Cache parameters such as block size, associativity,

cache size, write policy and coherence protocols

directly affect the performance of the on-chip

memory hierarchy. Since different applications have

different demands with respect to each of the above

parameters, Tao et al. (2008) have proposed

reconfigurable cache architecture with the parameters

being

transparent to application programmers who may set

the values according to the requirements of their

applications. Although this is difficult to achieve

practically requiring the programmer to be

architecture aware, the research groups working on

such reconfigurable architectures are optimistic and

have predicted positive results.

A recent publication by Hammoud et al. (2010)

outlines a novel technique called DPAP (Dynamic

Pressure-aware Associative Placement) for cache

blocks. This scheme decouples the mapping of

memory blocks to cache from their physical

addresses and places them according to their pressure

or frequency of use. The pressure is recorded at the

group granularity level which is later used to place an

incoming block in a cache block that belongs to a

group that has the minimum pressure.

A question associated with second-level cache and

NUCA organization is whether the cache should be

shared or private with respect to each core. This issue

has been explored by a number of researchers with

conflicting results supporting the respective

configurations. Hsu et al. (2005) has pointed out that

for small cache designs, shared cache gives a better

performance but for large cache designs, the

advantage is not so significant. On the contrary, the

study conducted by Tao et al. (2008) using various

benchmarks show that shared L2 gives better

performance for majority of the applications. Haakon

and Dybdahl (2007) have proposed to implement an

adaptive shared/private cache partitioning where the

amount of shared space among cores is controlled

dynamically. This shows that application dependent

features are important to

decide about shared/private cache configuration. The

control for this feature remains in hardware but is

made application- aware by coupling it with the

counters and registers meant for recording misses and

tags of evicted blocks. Most of the current generation

processors are equipped with PMUs (Processor

Monitoring Units) that provide the above

measurements. R-NUCA (Hardavwllas, N., et al.,

2010), a variant of NUCA, deals with the above issue

in a more formal way. It alleviates the problem of

both private and shared cache designs with

significant power savings by classifying blocks on

the basis of access patterns at run time and places it

near the requesting cores. Address mapping is

managed through a simple lookup that saves time and

power.

Another improvement for multi core processors is

more architectural support for non-blocking cache.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 180

To allow maximum miss level parallelism, the Miss

Handling Architecture (MHA) requires a number of

additional components as proposed in (Jahre, M., et

al., 2007). Since a higher miss-level parallelism may

add to congestion in the access path affecting the

overall performance, Jahre and Natvig (2007) have

proposed that a balance is required between the miss-

level parallelism and congestion in both on- chip and

off-chip interconnects.

In order to improve cache space utilization, a number

of techniques have been suggested. One such design

option is bypassing of cache accesses that are

transient referred to as block bypassing (Dybdahl, et

al., 2007). Block bypassing is proposed for second-

level cache and it requires the monitoring of reuse

behavior of cache blocks. Blocks that are classified as

bypassed are kept only in the first-level cache. Load

requests for bypassed blocks are used to generate an

early miss request, improving the miss penalty.

A strategy that is similar to reconfigurable cache

architecture with application/ programmer

transparent parameters is to have software controlled

cache. This scheme allows the operating system or

the application developer to become the software-

based cache controller and adapt the cache

parameters according to the run-time conditions. One

such technique is demonstrated in (Mori, et al., 2009)

and is named Cache-Core architecture. Using

heterogeneous multi core processor with local

memory that can be configured as software controlled

cache, the core that is not allocated a thread is made

to work as a shared L2 cache managed through

software.

Prefetching of instructions and data has been a useful

strategy for improving the performance of every level

of memory hierarchy. A number of prefecthing

strategies for the cache hierarchy are explored in

(Tao, et al., 2008 and Ebrahimi, E., et al., 2009).

After analyzing five prefetching schemes namely

always prefetch, on-miss prefetch, tagged prefetch,

stride-based prefetch and delta prefetch, it is inferred

through supporting data that tagged prefetching is the

most effective to reduce the miss rate (Tao, et al.,

2008). Whether this also gives the best overall

performance is not clear and needs to be investigated.

As pointed out in (Ebrahimi, E., et al., 2009),

prefetching may interfere with demand fetches. This

problem is more acute in CMPs because of multiple

cores generating prefetch requests. This may lead to

performance degradation that needs to be controlled.

Ebrahimi, et al. (2009) have proposed a solution

based on hierarchy of prefetch controls that combine

local and global prefetcher interference to balance the

benefits of prefetching with that of the overall system

performance. Address correlated prefetching are

effective for irregular access patterns that are

repetitive. Earlier, this scheme was not practical for

implementation because it required a large amount of

metadata that could not be stored on processor.

Wenisch et al. (2010) have suggested an innovative

technique to make the off-chip storage of metadata

practical, thus allowing the effective use of the

scheme in current generation processors.

Because of the growing power concerns in multi core

processors, in-order processors are a preferred

architecture, but this results in performance

degradation because of stalls due to various

dependences. This can be overcome by using iCFP

(in-order continual flow pipeline), a technique

proposed by Hilton et al. (2010). This technique uses

the runahead execution mode, a mode of execution

entered by an in-order processor when it encounters a

miss, increasing the Miss Level Parallelism (MLP).

All miss-dependent instructions are saved in a slice

buffer whereas the miss-independent instructions are

executed and retired speculatively. When the miss

returns, it executes the instructions saved in the slice

buffer. Hilton et al. (2010) have shown that iCFP

improves performance of in-order processors with the

additional advantage of low power consumption.

Use of adaptive shared/private NUCA cache

partitioning to improve the overall miss rate is given

by Dybdahl and Stenström (2007). Second-level

cache as NUCA is generally organized as per core

partition. If a core runs out of cache space, the

evicted block is relocated to the partition of another

core, thus utilizing some cache space as a shared one.

An

uncontrolled allocation may result in performance

degradation due to pollution. An adaptive scheme to

dynamically control the shared space attempts to

maximize the overall performance. This is done by

protecting the most recently used data in the last-

level cache. An improvement in suggested in

(Qureshi, M., 2009) through adaptive spill/receive

policy, which is a dynamic scheme used not only to

reduce but also to control pollution by defining

spiller and receiver partitions. Use of Miss Rate

Curves (MRC) for on- line optimization is proposed

in (Tam, et al., 2009) to support the decision making

process for the above schemes, but obtaining online

MRC has its overhead which makes it un- practical.

Tam et al. (2009) have proposed to obtain on-line

efficient MRC termed as Rapid MRC through the use

of PMUs (Processor Monitoring Units) available in

all current generation processors. The paper

approximates L2 MRC with low overhead and

compares RapidMRC of 30 standard application

benchmarks with that of real MRCs. Stack algorithm

is a common method to generate MRC which

maintains an LRU stack for recent memory accesses.

The stack distance of every memory access is

calculated to speculate for the next access to be a hit

or a miss. A histogram Hist(dist) shows all memory

accesses with a stack distance of dist. The number of

misses for a memory size size, Miss(size) is

calculated by the following expression

This then generates an MRC that is normalized over a

fixed probing period using MPKI (Number of Misses

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 181

Per Kilo Instructions), given by the following expression

Fig.1 Online RapidMRC vs Offline Real MRCs. X-axis gives the allocated L2 partition in terms of the number of

colors and Y-axis gives the resulting L2 cache miss rate (MPKI) (taken from Tam et. al.(2009))

where CPUInstructions is the length of the probing

period. (Fig.2) shows the comparison of online

RapidMRC with that of real (Offline) MRC (taken

from (Tam, et al, 2009)). For most of the

applications, online MRCs (RapidMRC) are close to

real MRCs obtained offline.

Other innovations include addition of hardware to

enhance a previously implemented optimization. The

LRU block replacement policy gives a poor

performance if the working set is larger than L2. This

is because a larger number of less reused blocks

occupy cache space. Bypassing these less reused

blocks with the help of less reused filter improves the

overall performance as outlined in (Xiang, et al.,

2009). Such blocks are identified by a reuse

frequency predictor. Adding a filter buffer to this

optimization to temporarily save such blocks avoids

more misses. Use of filters also reduces the overall

coherence traffic that increases with the increase in

the number of cores, causing congestion at various

resources. Design and implementation of Blue

Gene/P snoop filter, presented in (Salapura, et al.,

2008) attempts to filter snoop requests that are not in

cache. This is augmented with streaming registers

with a marked improvement in the overall

performance.

Cooperative Caching (Chang, et al., 2006) combines

the strengths of both private and shared caching. It is

a framework in which data used locally are kept in

private caches and the data that are shared globally

are kept in shared cache. Modified policies were

simulated and experiments were conducted by Chang

and Sohi which is summarized in (Chang, et al.,

2006). The results thus obtained were encouraging in

terms of off-chip miss rate and local cache hit rate.

To reduce off-chip communication latency in case of

a miss in cache, a 3D-stacked MRAM is proposed in

(Sun, G., et al., 2009). The implementation requires

addition of extra hardware at the L2 cache to memory

interface.

III. RESULTS AND DISCUSSION

A. Proposed Cache Optimizations

A number of cache optimization techniques were

successfully implemented in single core processors or

single core multiprocessors but have not yet been

tried in multi core processors. Some of these

techniques are discussed in this section with a

prediction of their effectiveness in multi core

processors.

Trace cache (Hennessy, et al., 2006) allows to cache

dynamic traces of executed instructions including

taken branches. This cache requires a branch

predictor to dynamically decide the execution path of

programs. A cache block is utilized more efficiently

in a trace cache but the overall cache utilization is not

efficient because the same instructions may be

present in a number of blocks. Due to some

problems, trace cache has been

implemented in only a selected number of single core

processors. Because it is less efficient in terms of

power and area utilization, it may not be an effective

mechanism for multi core processors. Moreover, the

control of trace cache is complex that may add to the

complexity of the overall cache control system.

Victim cache is an optimization technique where a

small, fully associative cache is placed between the

cache and its refill path. The victim cache is filled

with the blocks evicted from cache due to block

replacement. A miss in the cache is first checked in

the victim cache before the request is sent to the main

memory. In a multi core processor, this technique has

not been implemented in the same form but a similar

technique is used in second-level NUCA caches that

use shared/private configuration. In NUCA cache

with partitions private to each core, when a core runs

out of cache space and a block is evicted due to block

replacement, instead of discarding this block totally,

it is stored in the partition of another core in

anticipation that it may be needed again (Dybdahl, et

al., 2007). Although this scheme is similar to victim

cache but it is implemented at the cost of another

core’s cache space. Some controlled schemes have

also been suggested in (Tam, et al., 2009), but all

these schemes use the partition of another core. A

better implementation would be a victim cache which

is a small, one to four entry fully associative cache

that helps in significant improvement in miss rate. A

dedicated victim cache per core would also avoid

pollution of cache partition belonging to another

core. Since the victim cache contains recently evicted

blocks, it shall reduce both the miss penalty and miss

rate of the cache hierarchy.

One major issue which has not been investigated is

whether the cache design should always conform to

the shared memory paradigm as this requires policies

for coherence and consistency with an overhead that

affects the performance of on-chip memory

hierarchy. If the message passing paradigm is used

for inter-core communication and sharing of data, all

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 182

caches will remain private to each core without

causing interference due to coherence and

consistency traffic. In shared memory paradigm, a

large wait time is incurred in synchronization for

access to shared variables. Use of message passing

paradigm would remove the overhead of

synchronization wait time.

Various compiler-based optimization techniques are

suggested by a number of researchers to improve the

overall cache utilization (Chen, et al., 2008). These

techniques are effective for efficient utilization of

cache space and may be equally effective for CMPs.

All future compilers designed for multi core

processors should take into account the existence of

parallelism at the chip level. Other features that need

to be considered is that the inter core communication

and synchronization overhead is much smaller than

what is observed between

processors of conventional multiprocessors. This

advantage can be exploited in the design of compilers

and algorithms where inter-core communication is

more efficient than communication among

multiprocessors in SMPs.

Search in cache is carried out after translation from

virtual to physical address. The translation time adds

an overhead to all cache accesses which adds to the

critical memory access time. A solution implemented

in some processors is to implement virtual address

cache. The search in these caches is done in parallel

with the address translation process. But the solution

was found to be complex and was not as effective

due to high overheads for larger caches. A brief

account of the problems of virtually addressed caches

is given in (Hennessy, et al., 2006). A possible

solution to some of the problems is to use small first

level cache. Observing the design of cache hierarchy

of multi core processors, the first-level cache is

relatively smaller in CMPs than in single core

processors. This technique can therefore be

considered for implementation without the problems

seen in single core processors.

Use of write buffers in both write-through and write-

back cache improves the overall memory access time.

The number and size of write buffer is an important

parameter that determines the effectiveness of this

technique. An optimization to best utilize the write

buffers is to use write merging (Hennessy, et al.,

2006). This technique allows fast write for multiple

writes and better performance even with a smaller

number of write buffers. The same technique can be

applied to CMPs for effective utilization of write

buffers.

Most of the first-level cache is two-way set-

associative. In order to improve the hit time of the

cache, way prediction can be used that gives the hit

time of a direct-mapped cache and the miss rate of a

set associative cache (Hennessy, et al., 2006). Extra

bits are added to each cache block to predict the way

for next cache access. This scheme works well in

single core processors and it can be effective and

beneficial for multi core processors too. There is an

additional requirement of block predictor that

predicts the next block in the set. Only a single tag is

compared and the multiplexer is set earlier to select

the predicted block. With the help of accurate

predictors, way prediction can be effective for CMPs.

As in single core processors, pipelined access for

first-level cache is an effective way of reducing the

overall cache access time in multi core processors.

This method increases the hit time of individual

accesses to the cache but the overall effective access

time is reduced. The penalty increases for

mispredicted branches, a problem that can be

overcome with the use of efficient branch predictors.

This technique is expected to optimize the average

cache access time of individual cores with a number

of accesses pipelined to overlap the

access time. DSBC (Dynamic Set Balancing Cache)

tries to make use of an under-utilized set by

associating it with another set in the same cache

(Rolan, et al., 2009). Although suggested for single-

core processors, this scheme can be extended for

multi core processors with a few modifications.

All the cache optimization techniques that were

discussed in this section need to be investigated by

conducting experiments. Results inferred from such

investigation can then be applied for future

generation multi core processors.

B. Ineffective Cache Optimizations

The optimization techniques presented in Section 3.1

needs to be implemented to determine their

effectiveness. A few optimizations were tested for

multi core processors and were found to be

ineffective. As more optimizations are tested, one

may find more such techniques as not being useful

for multi core processors. The following paragraphs

give a brief account of the tested techniques that were

not successful in CMPs.

Cache affinity is a policy decision taken by the

operating system to schedule processes on specific

cores. The decision is based on the behavior of a

process that has its context in a cache and is expected

to reuse the contents as a result of temporal locality.

After a context switch, when a process is

rescheduled, it is allocated to the same processor,

assuming that its context may still be present in the

cache, reducing the compulsory or cold start misses.

This scheme has improved the performance in

conventional multiprocessors (SMPs). On

investigation of this scheme in multi core processors

and summarized in (Kazempour, et al., 2008), it was

observed that the performance improvement in multi

core uniprocessors (CMPs) is not significant, but the

performance is good in case of multi core

multiprocessors (SMPs based on CMPs).

Trace cache may not be an effective technique for

multi core processors because it wastes memory

space due to repetition of instructions in more than

one block because it contains dynamic sequence of

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 183

instructions. It also has relatively higher power

consumption. Although it is a promising technique in

theoretical terms, it may not work for large scale

multi core processors.

Since a large number of optimizations that have been

discussed in the previous sub-section have not been

tested, this section contains very few instances. As a

part of our PhD project, we plan to test most of the

techniques mentioned in Section 3.1 and report the

results in subsequent publications.

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper forms part of the guideline for future work

for researchers interested in optimization of memory

hierarchy for scalable multi core processors, as it

presents a survey of all such techniques proposed in

recent publications. The techniques are also presented

along with the comments about their effectiveness. A

summary of all the optimization techniques discussed

in this paper is presented in Table 1.

The effect of the mechanisms and policies of

operating system on the memory hierarchy,

especially the on-chip cache hierarchy is another

direction of research that can be explored. High

coherence traffic gives rise to congestion at the first

level cache. Directory-based coherence protocols

may reduce

Table I  Summary of All Cache Optimization

Techniques in CMPs

References  Papers in

Journals/Proceedings/Symposia  Chang and Sohi,

(2006),Cooperative Caching for Chip

Multiprocessors, Proceedings of the 33rd Annual

International Symposium on Computer Architecture,

p.264-276  Chen and Kandemir, (2008), Code

Restructuring for Improving Cache Performance in

MPSoCs, IEEE Transactions on Parallel and

Distributed Systems, Vol. 19, No. 9, p. 1201-

1214  Dybdahl , H., P. Stenström, (2007), An

Adaptive Shared/Private NUCA Cache Partitioning

Scheme for Chip Multiprocessors, Proceedings of the

IEEE 13th International Symposium on High

Performance Computer Architecture, p. 2-

12  Dybdahl., Stenström, (2006), Enhancing Last-

Level Cache Performance by Block Bypassing and

Early Miss Determination, Asia- Pacific Computer

Systems Architecture Conference (ACSAC), LNCS

4186, p. 52-66  Ebrahimi, E., O.Mutlu, C.J.Lee,

Y.N. Patt, (2009), Coordinated Control of Multiple

Prefetchers in Multi-Core Systems, Proceedings of

the 42nd International Symposium on Micro-

architecture (MICRO), p. 327-336  Hammoud, M.,

S. Cho, R.G. Melhem, (2010) A Dynamic Pressure-

Aware Associative Placement Strategy for Large

Scale Chip Multiprocessors, IEEE Computer

Architecture Letters, Volume 9, No.1, p. 29-

32  Hardavellas, N., M. Ferdman, B.Falsafi, A.

Ailamaki, (2010), Near- Optimal Cache Block

Placement with Reactive Non-uniform Cache

Architecture, IEEE Micro, Vol. 1, p. 20-28  Hilton,

A., S.Nagarakatte, A.Roth, (2010) iCFP: Tolerating

All-Level Cache Miss in In-order Processor, IEEE

Micro, Vol. 1, p 12-19  Hsu, L., R. Iyer, S.

Makineni, S. Reinhardt, D. Newell, (2005),

Exploring the Cache Design Space for Large Scale

CMPs, ACM SIGARCH Computer Architecture

News, Volume 33, Issue 4, p.24-33 Jahre, M., L.

Natvig, (2007), Performance Effects of a Cache Miss

Handling Architecture in a Multi core Processor,

Norwegian International Conference  Jouppi and

Wilton, (1994), Tradeoffs in Two-Level On-Chip

Caching, ACM SIGARCH Computer Architecture

News: Proceedings of 21st Annual International

Conference on Computer Architecture (ICSA), V

olume 22, Issue 2, p.34-45  Kazempour, V.,

A.Fedorova, P.Alagheband, (2008), Performance

Implications of Cache Affinity on Multicore

Processors, Proceedings of the 14th International

EuroPar Conference on Parallel Processing , p.151-

161  Kim, C., D. Burger, S. W. Keckler, (2003),

NUCA: A Non-Uniform Cache Access Architecture

for Wire-Delay Dominated On-Chip Caches, IEEE

Micro, Vol. 6, p. 99-107  Lin J. et al., (2008),

Gaining Insights into Multi core Cache Partitioning:

Bridging the Gap between Simulation and Real

Systems, IEEE, p. 367-378  Mori and Kise, (2009),

The Cache-Core Architecture to Enhance the

Memory Performance on Multi-Core Processors,

2009 International Conference on Parallel and

Distributed Computing, Applications and

Technologies, Published by IEEE Computer Society,

p. 445-450 Qureshi, M., (2009), Adaptive Spill-

Receive for Robust High- Performance Caching in

CMPs, Proceedings of the IEEE 15th International

Conference on High Performance Computer

Architecture (HPCA), p. 45-54 Rolản, D., B.

Fraguela, R. Doallo, (2009), Adaptive Line

Placement with the Set balancing Cache, 42nd

Annual IEEE/ACM International Symposium on

Micro-architecture (MICRO-42), p. 529-

540  Salapura, Blumrich, Gara, (2008), Design and

Implementation of Blue Gene/P Snoop Filter,

Proceedings of the 14th International Symposium on

High Performance Computer Architecture (HPCA),

p.5-14  Sun, G., X. Dong, Y. Xie, J. Li, (2009), A

Novel Architecture of the 3D Stacked MRAM L2

Cache for CMPs, IEEE 15th International

Symposium on High Performance Computer

Architecture (HPCA), p. 239-249  Tam, D. K., R.

Azimi, L.B. Soares, M. Stumm, (2009), RapidMRC:

Approximating L2 Miss Rate Curves on Commodity

Systems for Online Optimizations, Proceedings of the

14th International Conference

Optimizations (Level 1 cache)
Trace Cache  Virtually Addressed Cache Way

Prediction  Pipelined Cache Access

Optimizations (Level 2 Cache)
NUCA implemented

D-NUCA implemented R-NUCA

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100100 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 184

Adaptive Shared/Private Cache Adaptive

Spill/Receive Policy

Use of MRC to support the above Block bypassing

Cache-Core Architecture Cooperative Caching  3D

Stacked MRAM Victim Cache

Write Buffers with Write Merging Dynamic Set

Balancing Cache (DSBC)

Optimizations (Both L1 and L 2 Caches)
Use Property of Exclusion  Reconfigurable

Cache  Dynamic Pressure Aware Placement(DPAP)

Non-Blocking Cache – MHA  Prefetching of

Instructions and data

Tagged Prefetch  Hierarchy of Prefetch Controls

Address-Correlated Prefetching

iCFP (In-order Control Flow Pipeline) Compiler-

based Optimizations  Cache Affinity

the overall coherence traffic but this comes with the

cost of maintaining the directory and keeping it

updated. These and other research directions shall be

explored in future research.

V. ACKNOWLEDGEMENT

This is the extended version of our own paper

presented and published in “International Conference

on Computer and Emerging Technologies” (ICCET

2011) held on 22-23 April 2011 at Shah Abdul Latif

University, Khairpur, Sindh, Pakistan.

REFERENCES

 [1] Architectural Support for Programming

Languages and Operating Systems (ASPLOS), p.121-

132  Tao, J., M. Kunze, W. Karl, (2008),

[2] Evaluating the Cache Architecture of Multi core

Processors, 16th Euromicro Conference on Parallel,

Distributed and Network-based Processing, p.12-19

Villa, F. J., M. E. Acacio,, J. M. Garc ́ıa, (2005),

[3]Memory Subsystem Characterization in a 16-Core

Snoop-based Chip-Multiprocessor, Proc of the 1st

International Conference on High Performance

Computing and Communication (HPCC), p213-222

Wenisch, T .F., M. Ferdman, A, Ailamaki, B. Falsafi,

A. Moshovos, (2010),

[4] Making Address Correlated Prefetching

Practical, IEEE Micro, Vol. 1, p. 50-59  Xiang, L.,

T. Chen, Q. Shi, W. Hu, (2009),

[5] Less Reused Filter: Improving L2 Cache

Performance via Filtering Less Reused Lines,

Proceedings of the 23rd International Conference on

Supercomputing (ICS), p. 68-79 Zhang and

Asanović, (2005),

[6] Victim Replication: Maximizing Capacity while

Hiding Wire Delay in Tiled Chip Multiprocessors,

32nd International Symposium on Computer

Architecture (ICSA-32), p. 336-345

Books Hennessy and Patterson, (2006), Computer

Architecture – A Quantitative Approach, 4th Edition,

Morgan Kaufmann Publishers Euro-Par), 2008,

p.151-161

AUTHORS
Main Author – Harsh Chawla, B.Tech

 final year , Dronacharya College of

Engineering ,Gurgaon

Second Author – Ashutosh Bhatt , B.Tech

final year , Dronacharya College of

Engineering ,Gurgaon

Third Author – Bibhuti Bhushan , B.Tech

final year , Dronacharya College of

Engineering ,Gurgaon

