
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 208

MINING ASSOCIATION RULES IN LARGE

DATABASES

Shraddha Wakchaware

Assistant Professor, P. C. College Of Engineering

Department Of Information Technology, Goa University, Verna

Abstract- Data mining uses a technique of Association

Rule Mining to generate rules in an efficient way.

Association rule learning is a popular and well

researched method for discovering interesting

relations between variables in large databases. The

main problem that occurs is, handling the large

databases. The paper presents the methodology to

find the association rules from a large dataset. It also

puts forward the ways to deal with the large datasets

and determines the factors on which the generation of

association rules is dependent. Thus, the association

rules are generated by two ways considering the

support count which is user defined and secondly,

generated in accordance with the database with

minimum memory usage. One such large database

that is under consideration is census data set which is

significant in the stock exchange system. The input

data is preprocessed and the factors like memory

usage and total time are accounted. Upon generation

of the association rules the variance and the

difference is recorded and they are compared for

their accuracy.

Index Terms- Mining, Association Rule, Database,

Support Count, Census, Variance and Accuracy.

I. INTRODUCTION

Database mining is the computational process of

discovering patterns in large data sets involving

methods at the intersection of artificial intelligence,

machine learning, statistics, and database systems.

The overall goal of the data mining process is to

extract information from a data set and transform it

into an understandable structure for further use.

Apart from the raw analysis step, it involves

database and data management aspects, data pre-

processing, model and inference considerations,

interestingness metrics, complexity considerations,

post-processing of discovered structures,

visualization, and online updating. The actual data

mining task is the automatic or semi-automatic

analysis of large quantities of data to extract

previously unknown interesting patterns such as

groups of data records (cluster analysis), unusual

records (anomaly detection) and dependencies

(association rule mining). Data mining is also the

analysis step of the "Knowledge Discovery in

Databases" process, or KDD.

The paper implementations is done mainly in three

stages:

1. Pre-processing

2. Data mining

3. Results validation

Pre-processing – Before the mining algorithms are

applied there is a need to gather data. Once the data

is made available it should be large enough so that

the relevant patterns can be reveled. Once the

relevant patterns are found then the appropriate

mining strategy could be applied to mine them.

This section makes use of the partitioning

algorithm to partition the large data into subsets.

Data Mining – The paper makes use of the

following:

1. Association Rule Learning: It searches for

the relationships between different

variables.

2. Summarization: provides a more compact

representation of the data set, including

visualization and report generation.

Result Validation- It involves the depiction whether

the patterns are really relevant or not. After

applying the data mining algorithms the results

generate the relevant patterns.

Thus, one of the main challenges in database

mining is to have such techniques and procedures

that can handle large volumes of data. This is

because most of the mining algorithms perform

their computations over entire database and the

databases are very large. Thus, the generation of

association rules from these large databases is a

crucial task under consideration.

The main aim of the implementation of this paper

is to compare various parameters based on the

support count values which may be user defined or

found accurately as per the nature of the dataset.

The validation of the user defined values is done by

using simple Apriori algorithm and the exact values

of the support counts are found by the linear and

polynomial strategies.

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Data_management
http://en.wikipedia.org/wiki/Data_pre-processing
http://en.wikipedia.org/wiki/Data_pre-processing
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Data_visualization
http://en.wikipedia.org/wiki/Online_algorithm
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Anomaly_detection
http://en.wikipedia.org/wiki/Association_rule_mining

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 209

II. IMPORTANCE OF ASSOCIATION RULE MINING

It is intended to identify strong rules discovered in

databases using different measures of

interestingness.Based on the concept of strong

rules, introduction to association rules for

discovering regularities between products in large-

scale transaction data recorded by point-of-sale

(POS) systems in supermarkets has been done.

For example, the rule

found in the sales data of a supermarket would

indicate that if a customer buys onions and potatoes

together, he or she is likely to also buy hamburger

meat. Such information can be used as the basis for

decisions about marketing activities such as, e.g.,

promotional pricing or product placements. In

addition to the above example from market basket

analysis association rules are employed today in

many application areas including Web usage

mining, intrusion detection, Continuous production

and bioinformatics. Association rules are usually

required to satisfy a user-specified minimum

support and a user-specified minimum confidence

at the same time. Association rule generation is

usually split up into two separate steps:

1. First, minimum support is applied to find

all frequent item sets in a database.

2. Second, these frequent item sets and the

minimum confidence constraint are used

to form rules.

While the second step is straightforward, the first

step needs more attention.

Finding all frequent item sets in a database is

difficult since it involves searching all possible

item sets (item combinations). The set of possible

item sets is the power set over and has size

(excluding the empty set which is not a

valid item

set). Although the size of the power set grows

exponentially in the number of items in ,

efficient search is possible using the downward-

closure property of support(also called anti-

monotonicity) which guarantees that for a frequent

item set, all its subsets are also frequent and thus

for an infrequent item set, all its supersets must also

be infrequent.

Figure 2.1: Downward Closure Property

In the above figure frequent item set is lattice,

where the color of the box indicates how many

transactions contain the combination of items. Note

that the lower levels of the lattice can contain at

most the minimum number of their parents items;

eg: {ac} can have only at most min(a,c) items. This

is called downward closure property.

III. DATASET USED

The dataset was collected from the site “UCI

repositories”

(http://archive.ics.uci.edu/ml/datasets.html). This is

a large repository of data where in numerous

datasets are available. The UCI Machine Learning

Repository is a collection of databases, domain

theories, and data generators that are used by the

machine learning community for the empirical

analysis of machine learning algorithms. The

archive was created as an ftp archive in 1987 by

David Aha and fellow graduate students at UC

Irvine. Since that time, it has been widely used by

students, educators, and researchers all over the

world as a primary source of machine learning data

sets. As an indication of the impact of the archive,

it has been cited over 1000 times, making it one of

the top 100 most cited "papers" in all of computer

science.

Note:

 The dataset that is used for this project is

extracted from the census bureau database

found at

http://www.census.gov/ftp/pub/DES/www

/welcome.html donated by Ronny Kohavi

and Barry Becker.

 It is split into train-test using MLC++

GenCVFiles (2/3, 1/3 random).

 There are 48842 instances, mix of

continuous and discrete. Also, 45222 if

instances with unknown values are

removed.

http://en.wikipedia.org/wiki/Point-of-sale
http://en.wikipedia.org/wiki/Pricing
http://en.wikipedia.org/wiki/Product_placement
http://en.wikipedia.org/wiki/Market_basket_analysis
http://en.wikipedia.org/wiki/Market_basket_analysis
http://en.wikipedia.org/wiki/Web_usage_mining
http://en.wikipedia.org/wiki/Web_usage_mining
http://en.wikipedia.org/wiki/Intrusion_detection
http://en.wikipedia.org/wiki/Continuous_production
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Power_set
http://archive.ics.uci.edu/ml/datasets.html
http://www.census.gov/ftp/pub/DES/www/welcome.html
http://www.census.gov/ftp/pub/DES/www/welcome.html

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 210

 The Extraction was done by Barry Becker

from the 1994 Census database.

 A set of reasonably clean records were

extracted using the following conditions:

 ((AAGE>16) && (AGI>100) &&

(AFNLWGT>1)&& (HRSWK>0))

The census dataset is basically considered because

of the requirement of large dataset. Thus the dataset

is preprocessed for generating association rules.

The choice of dataset is significantly important.

Similar to census dataset other datasets such as

bank datasets, stock exchange datasets etc. can be

used. One of the key point in choosing the dataset

is it should have large size and relevant entries. The

entities in the datasets should be significantly

different and distinguished from one another. Any

limitations if cited is to be taken care of before

preceeding to preprocessing step.

IV. METHODOLOGY AND PROCEDURE

A. Block Diagram

Figure 4.1 Block diagram of the proposed System

 The user will select the large dataset as an

input.

 The partitioning algorithm is applied to

obtain the partitions.

 Decision is made depending on the value

of support count whether it is user defined

or non-user defined.

 If the support count is user defined then

directly apply Apriori algorithm and find

the frequent item sets.

 If the support count is not user defined

then its value is found out by either of the

two methods i.e. linear strategy and/or

polynomial strategy.

 With the determined support count value

as per the nature of the dataset again the

Apriori algorithm is executed and frequent

item sets are found out.

 The generated item sets depending on the

value of support count is compared for

various parameters.

V. DATA PREPROCESSING MODULE

For the generation of the frequent item sets the

dataset must be in a format suitable for finding the

associativity. The transactions in the dataset must

be converted into a suitable format so that their

comparison can be done and the associativity

between various attributes can be found. Therefore,

the transactions are in the form (TID, ij, ik,……in).

The items in a transaction are kept in lexicographic

order. The algorithm can be straightforward applied

when transactions are kept normalized in (TID,

item) form. Also TIDs are monotonically

increasing.

VI. APRIORI ALGORITHM

In computer science and data mining, Apriori is a

classic algorithm for learning association rules.

Apriori is designed to operate on databases

containing transactions. Other algorithms are

designed for finding association rules in data

having no transactions.

As in common in association rule mining, given a

set of item sets, the algorithm attempts to find

subsets which are common to at least a minimum

number C of the item sets. Apriori uses a “bottom

up” approach, where frequent subset are extended

one item at a time (a step known as candidate

generation), and groups of candidates are tested

against the data. The algorithm terminates when no

further successful extensions are found.

Apriori uses breath- first search and a tree structure

to count candidate item sets efficiently, generates

candidate item sets of length k from item sets of

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 211

length k-1. Then it prunes the candidates which

have an infrequent such pattern. According to the

downward closure lemma, the candidate set

contains all frequent k-length item sets. After that,

it scans the transaction database to determine

frequent item sets among the candidates.

A. Key Concepts

 Frequent Item sets : The sets of item which has

minimum support (denoted by L, for the i
th

item set)

 AprioriProperty : Any subset of frequent item

set must be frequent.

 Join Operation : To find Lk, a set of candidate

k-item sets is generated by joining Lk-1 with

self.

B. A brief description of the algorithm

1. Find all frequent item sets:

 Get frequent items:

- Items whose occurrence in

database is greater than or

equal to min_support

threshold.

 Get frequent item sets:

- Generate candidates from

frequent items.

- Prune the results to find the

frequent item sets.

2. Generate strong association rules from

frequent item sets

 Rules which satisfy the

min_support and min_confidence

threshold.

C. Steps of Apriori Algorithm

1. L1= {large 1-itemsets};

2. For (k=2; Lk-1≠Ф; k++) do begin

3. Ck= apriori-gen(Lk-1); //New candidate

4. Forall transactions tϵD do begin

5. Ct= subset(Ck,t); // Candidates contained in t

6. Forallcandidiates c ϵ Ct do

7. c.count ++;

8. end

9. Lk= {c ϵCk | c.count ≥ minsup}

10. end

11. Answer = UkLk;

In Apriori algorithm the first pass of the algorithm

simply counts item occurrences to determine the

large 1-itemsets. A subsequent pass, say pass k,

consists of two phases. First, the large item sets Lk-

1 found in the (k-1)th pass are used to generate the

candidate item sets Ck, using the apriori–gen

function. Next, the database is scanned and the

support of candidates in Ck is counted. For fast

counting, we need to efficiently determine the

candidates in Ck that are contained in a given

transaction t.

VII. PARTITIONING ALGORITHM

Partitioning algorithm works in two scans of the

database. In one scan it generates a set of all

potentially large item sets by scanning the database

once. This is a superset of all large item sets.

During the second scan, counters for each of these

item sets are set up and their actual support is

measured in one scan of the database.

The algorithm executes in two phases. In the first

phase, the partition algorithm logically divides the

database into a number of non- overlapping

partitions. The partitions are considered one at a

time and all the large item sets for that partition are

generated. At the end of phase I, these large item

sets are merged to generate a set of all potential

large item sets. In phase II, the actual supports for

these item sets are generated and the large item sets

are identified. The partition sizes are chosen such

that each partition can be accommodated in the

main memory so that the partitions are read only

once in each phase.

Definition: A partition p € D of the database refers

to any subset of the transactions contained in the

database D. Any two different partitions are non-

overlapping i.e., pi∩pj =Ф, i≠j. We define local-

support for an item set as a fraction of transaction

containing that item set in a partition. We define

local candidateitem set to be an item set that is

being tested for minimum support within a given

partition. A local large item set to be an item set

that is being tested for minimum support within a

given partition. A local large item set is an item set

whose local support in a partition is at least the user

defined support. A local large item set may or may

not be large in the context of entire database. We

define global support, global large item set, and

global candidate item set as above except they are

in the context of entire database D. Our goal is to

find all global large item sets.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 212

Table : Notation

Ck
p
 Set of local candidate k-item sets in

partition p

Lk
p
 Set of local large k-item sets in partition p

L
p
 Set of all local large item sets in partition p

Ck
G
 Set of global candidate k- item sets

C
G
 Set of all global candidate item sets

Lk
G
 Set of global large k- item sets

We use the notation shown in Table. Individual item

sets are represented by small letters and sets of item

sets are represented by capital letters. When there is

no ambiguity we omit the partition number when

referring to local item set. We use the notation

c[1],c[2],…,c[k] to represent a k-item set c

consisting of items c[1], c[2],….,c[k].

A. Pseudocode of Partitioning Algorithm
1. P = partition_database (D)

2. n = Number of partitions

3. For i= 1 to n begin // Phase I

4. read_in_partition(piϵP)

5. L
i
 = gen_large_itemsets(pi)

6. end

7. for (i=2; Li
j
≠Ф, j=1,2,………n; i++) do

8. Ci
G
=Uj=1,2,……..,nLi

j
 //Merge Phase

9. for i=1 to n begin // Phase II

10. read_in_partition (piϵ P)

11. for all candidates c ϵ C
G
gen_count

(c, pi)

12. end

13. LG = { c ϵ C
G
| c.count ≥ minSup}

Algorithm: Initially the database D is

logically partitioned into n partitions. Phase I

of the algorithm takes n iterations. During

iteration i only partition pi is considered. The

function gen_large_itemsets takes a partition pi

as input and generates local large item sets of

all lengths, L1
i
,L2

i
,……Ll

i
 as the output. In the

merge phase the local large item sets of same

lengths from all n partitions are combined to

generate the global candidate item sets. In

phase II, the algorithm sets up counters for

each global candidate item set and counts their

support for the entire database and generates

the global large item sets. The algorithm reads

the entire database once during phase I and

once during phase II.

VIII. ESTIMATING SUPPORT COUNT

STRATEGIES

Suppose that the users specify a minimum-support

r_minsupp with respect to the interval [0,1]. We

need to determine the

desiredminsupp for mining database D for which

the support interval is [a,b], implemented by the

mapping f: [a,b] → [0,1]. Very often, such a

mapping f is hidden. Therefore, we should find an

approximate polynomial function ḟ for f. Here is a

strategy for constructing the mapping.

Let X in [a,b] and Y in [0,1]be x1, x2,……….,xn,

and y1, y2,………..,yn as listed below:

A method for finding an approximate polynomial

function ḟ forf between X and y can be performed

by the following theorem:

Theorem 1 :For X and Y, the approximate

polynomial function for fitting the above data can

be constructed as

…………(8.1)

Where,

Fk(x)=((x- x2k)/(x2k-1 –x2k))(Gk(x2k-1) +

 ((x-x2k-1)/(x2k –x2k-1)) (Gk(x2k))

k= 1,2, …………..N; N is the number of fitting

times; and Gk is the fitted data.

F(x) is the approximation function of f that we

desire.It is a polynomial function for which the

order is not over 2N+1. Using this approximation

function, we can generate an approximate

minsuppfrom the given r_minsupp.

x1 x2 ……… xn X

y1 y2 …..… yn Y

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 213

A. Simplifying the polynomial function

It is unrealistic to obtain so many point pairs for

constructing the approximation function of f using

the above theorem. The following subsection

describes the simple and useful approximation

function of f.

1. Linear Strategy

f(x) = (1/(b-a))x + (a/(a-b))

……………………..(8.2)

2. Polynomial Strategy

f(x) = (1/ (b
n
-a

n
))x

n
 + (a

n
/(a

n
-

b
n
))………………….(8.3)

These equations would give the value of the

support count as per the dataset. This value would

be used to generate association rules.

B. Identifying frequent item sets by polynomial

approximation

Based on the polynomial approximation and

support- confidence framework, we can define that

J is a frequent item set of potential interest, denoted

by fipi(J)
2
, if and only if

fipi (J) = supp(J) ≥ minsupp X, Y: X U Y = J ^ X

∩ Y = Ф ^

supp (X U Y)/ sup (X) ≥ minconf supp

 (X U Y) – supp (X) supp(Y) ≥ mininterest

whereminsupp, minconf, and mininterest are the

thresholds of minimum-support, minimum

confidence (for the purpose of association rule

analysis), and minimum interest, respectively.

IX. IMPLEMENTATION DETAILS

A. Partitioning The Database

After following the partitioning algorithm we get

the records in the database being partitioned into

sub partitions. It also shows the minimum

occurrence of the attribute. This is the first stage

where in we have to just divide the records into ‘n’

number of sub

records so the number of scans is just restricted to

two. Thus by doing this the large database would

be scanned only twice reducing the large CPU

overheads.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 214

B. Determination of Exact Support Count

Value

As per the dataset this snapshot finds the frequent

item set and displays the exact value of the support

count as per two strategies viz. Linear Strategy and

Polynomial Strategy. By using this value of the

support we can find the number of candidate sets.

The results produced by these values differ from

any value from the users.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 215

X. RESULTS AND OBSERVATIONS

Notations:

A= Strategies

B= Support (%)

C= Candidate Count

D= Algorithm Stopping Size

E= Frequent Item Set Count

F=Maximum Memory Usage (mb)

G= Total Time (ms)

XI. CONCLUSION

In this paper, the support count was a major factor

focused on when finding the frequent item sets. In

most of the algorithms on mining association rules

the support count was user defined. But when it

takes the user defined values the results are not

accurate and vary from user to user. Thus, here an

attempt is made to find the exact value of the

support as per the

nature of the database using linear strategy and

polynomial strategy. Apart from the support count

various other factors like candidate count,

algorithm stopping size, frequent item set count,

maximum memory usage and total time are also

accounted.

REFERENCES

[1] R.Agrawal and R. Srikant. Fast algorithms for

mining association rules in large databases. In

Proceedings of 20
th

 International Conference

on Very Large Data Bases, Santiago, Chile,

August 29 –September 1 1994

[2] H. Mannila and H. Toivonen and A.I

Verkamo. Efficient Algorithms for

discovering Association Rules. In KDD-94:

AAAI Workshop on Knowledge Discovery in

Databases, July 1994

[3] Agrawal R, Shafer J (1996) Parallel mining of

Association Rules. IEEE Trans Knowl Data

Eng.

[4] A. Savasere, E. Omiecinski, S. Navathe. An

efficient Algorithm for mining Association

Rules In Large Databases. In the proceedings

of the 21
st
 VLDB Conference Zurich,

Swizerland, 1995

[5] Bayardo B (1998) Efficiently Mining Long

Patterns from Databases. In : Proceedings of

ACM international conference on

management of data.

[6] Han J, Pei J, Yin Y (2000) Mining frequent

patterns without candidate generation. In:

Proceedings of the ACM SIGMOD

international conference on management of

data.

[7] Han J, Wang J, Lu Y, Tzvetkov P (2002)

Mining Top K-frequent closed

[8] patterns without minimum support. In :

Proceedings of the 2002 IEEE international

conference on data mining.

[9] http://en.wikipedia.org/wiki/Association_rule

_learning

[10] www.cs.uic.edu/~liub/teach/cs583-fall-

05/CS583-association-rules.ppt

[11] www.cs.uic.edu/~liub/teach/.../CS583-

association-sequential-patterns.ppt

[12] http://archive.ics.uci.edu/ml/datasets.html

[13] http://archive.ics.uci.edu/ml/datasets/Census+

Income

[14] https://www.webyog.com/

[15] en.wikipedia.org/wiki/S Lyog

[16] https://www.draw.io/

[17] en.wikipedia.org/wiki/Eclipse_(software)

[18] Data Mining for Association Rules and

Sequential Patterns: Sequential and Parallel

Algorithms - Jean-Marc Adamo,Springer

http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Association_rule_learning
http://www.cs.uic.edu/~liub/teach/cs583-fall-05/CS583-association-rules.ppt
http://www.cs.uic.edu/~liub/teach/cs583-fall-05/CS583-association-rules.ppt
http://www.cs.uic.edu/~liub/teach/.../CS583-association-sequential-patterns.ppt
http://www.cs.uic.edu/~liub/teach/.../CS583-association-sequential-patterns.ppt
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets/Census+Income
http://archive.ics.uci.edu/ml/datasets/Census+Income
https://www.webyog.com/
https://www.draw.io/

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002

IJIRT 100101 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 216

Author’s Biography

 Shraddha Wakchaware is born in Paratwada, District Amravati,

Maharashtra, India. She received Masters Degree in Internet Technology from Goa

University, Goa, India in 2013. She is working as Assistant Professor at P. C . College Of

Engineering, Verna, Goa-403001, India. She received Bachelor’s Degree in Computers,

Mumbai University, Maharashtra in 2010. She has worked as Lecturer in SSPM college for

one year. Her research interests include data mining, data analysis, association rule mining.

She is publishing several papers in international journals and conferences.

Ms. Wakchaware is also an active member of ISTE students chapter. She is also the second

rank holder of the state in Goa University for her excellence in Master’s. She has also been

awarded for securing the 1
st
 position for her Bachelor’s. She is also the rank holder in

Mumbai University and has been awarded with excellence certificate.

