
 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100123 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 258 
 

UNDERSTANDING THE IMPACT OF MULTI-CORE 

ARCHITECTURE IN CLUSTER  COMPUTING: A 

CASE STUDY WITH INTEL DUAL-CORE SYSTEM 

    

Sweety Sen, Sonali Samanta 

B.Tech, Information Technology, 

Dronacharya College of Engineering, Gurgaon , India 

 

Abstract- Multi-core processor is a growing industry 

trend as single core processors rapidly reach the 

physical limits of possible complexity and speed. In 

the new Top500 supercomputer list, more than 20% 

processors belong to multi-core processor family. 

However, without an in-depth study on application 

behaviors and trends on multi-core cluster, we might 

not be able to understand the characteristics of 

multicore cluster in a comprehensive manner and 

hence not be able to get optimal performance. In this 

paper, we take on the challenges and design a set of 

experiments to study the impact of multi-core 

architecture on cluster computing. We choose to use 

one of the most advanced multi-core servers, Intel 

Bensley system with Woodcrest processors, as our 

evaluation platform, and use popular benchmarks 

including HPL, NAMD, and NAS as the applications 

to study. From our message distribution experiments, 

we find that on an average about 50% messages are 

transferred through 

intra-node communication, which is much higher 

than intuition. This trend indicates that optimizing 

intra-node communication is as important as 

optimizing inter-node communication in a multi-core 

cluster. We also observe that cache and memory 

contention may be a potential bottleneck in multi-

core cluster, and communication middleware 

and applications should be multi-core aware to 

alleviate this problem. We demonstrate that multi-

core aware algorithm, e.g. data tiling, improves 

benchmark execution time 

by up to 70%. We also compare the scalability of 

multicore cluster with that of single-core cluster and 

find that the scalability of multi-core cluster is 

promising. 

 
I. INTRODUCTION 

The pace people pursuing computing power has 

never slowed down. Moore's Law has been proven 

to be true over the passage of time - the 

performance of microchips has been increasing at 

an exponential rate, doubling every two years.In 

1978, a commercial fight between New York and 

Paris cost around $900 and took seven hours. If the 

principles of Moore's Law had been applied to the 

airline industry the way they have to the 

semiconductor industry since 1978, that fight 

would now cost about a penny and take less than 

one second.(a statement from Intel) However,it 

becomes more difficult to speedup processors 

nowadays by increasing frequency. One major 

barrier is the overheat problem, which high-

frequency CPU must deal with carefully. The other 

issue is power consumption. These concerns make 

it less cost-to-performance effective to increase 

processor clock rate. Therefore, computer 

architects have designed multi-core processor, 

which means to place two or more processing cores 

on the same chip Multi-coreprocessors speedup 

application performance by dividing the workload 

to different cores. It is also referred to as Chip 

Multiprocessor (CMP). 

 

On the other hand, cluster has been one of the most 

popular models in parallel computing for decades. 

The emergence of multi-core architecture will 

bring clusters into a multi-core era. As a matter of 

fact, multi-core processors have already been 

widely deployed in parallel computing. In the new 

Top500 supercomputer list published in November 

2006, more than 20% processors are multi-core 

processors from Intel and AMD . In order to get 

optimal performance, it is crucial to have in-depth 

understanding on application behaviors and trends 

on multi-core cluster. It is also very important to 

identify potential bottleneck in multi-core cluster 

through evaluation, and explore possible solutions. 

However, since multi-core is a relatively new 

technology, few research has been done in the 

literature. In this paper, we take on the challenges 

and design a set of experiments to study the impact 

of multi-core architecture on cluster computing. 

The purpose is to give bothapplication and 

communication middleware developers insights on 

how to improve overall performance on multi-core 

clusters. We aim to answer the following questions:  

 What are the application communication 

characteristics in multi-core cluster?  

 What are the potential bottlenecksin multi-core 

cluster and how to possibly avoid them?  

 Can multi-core cluster scale well? 

We choose to use one of the most advanced 

servers, Intel Bensley system with dual-core 



 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100123 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 259 
 

Woodcrest processor, as a case study platform. The 

benchmarks used include 

HPL, NAMD, and NAS parallel benchmarks.From 

our message distribution experiments, we find that 

on an average about 50% of messages are 

transferred through intranode communication, 

which is much higher than intuition. This trend 

indicates that optimizing intra-node communication 

is as important as optimizing inter-node 

communication in a multi-core cluster. An 

interesting observation from our bottleneck 

identification experiments is that cache and 

memory contention may be a potential bottleneck 

in multi-core cluster, and communication 

middleware and applications should be written in a 

multi-core aware manner 

to alleviate this problem. We demonstrate that data 

tiling, a data locality optimization technique 

improves benchmark execution time by up to 70%. 

We also compare the scalability of multi-core 

cluster with that of single-core cluster and find that 

the scalability of multi-core cluster is promising 

The rest of the paper is organized as follows: In 

Section 2 we introduce the background knowledge 

of multi-core architecture. In Section 3 we describe 

the methodology of our evaluation. Setup of the 

evaluation system is described in Section 4 and the 

evaluation results and analysis are presented in 

Section 5. Related work is discussed in Section 6. 

And finally we conclude and point out future work 

directions in Section. 

 
II. MULTI-CORE CLUSTER 

Multi-core means to integrate two or more 

complete 

computational cores within a single chip . The 

motivation of the development of multi-core 

processors is the fact that scaling up processor 

speed results in dramatic 

rise in power consumption and heat generation. In 

addition, it becomes more difcult to increase 

processor speed nowadays that even a little 

increase in performance will be 

costly. Realizing these factors, computer architects 

have proposed multi-core processors that speed up 

application performance by dividing the workload 

among multiple processing cores instead of using 

one super fastsingle processor. Multi-core 

processor is also referred to as Chip Multiprocessor 

(CMP). Since a processing core can be viewed as 

an independent processor, in this paper we use 

processor and core interchangeably. 

      Most processor venders have multi-core 

products, e.g. Intel Quad- and Dual-Core Xeon, 

AMD Quad- and DualCore Opteron, Sun 

Microsystems UltraSPARC T1 (8cores), IBM Cell, 

etc. There are various alternatives in designing 

cache hierarchy organization and memory access 

model. Figure 1 illustrates two typical multi-core 

system designs. The left box shows a NUMA [1] 

based dual-core system in which each core has its 

own L2 cache. Two cores 

on the same chip share the memory controller and 

local memory. Processors can also access remote 

memory, although local memory access is much 

faster. The right box 

shows a bus based dual-core system, in which two 

cores on the same chip share the same L2 cache 

and memory controller, and all the cores access the 

main memory through a 

shared bus. 

   Due to its greater computing power and cost-to 

performance effectiveness, multi-core processor 

has been deployed in cluster computing. In a multi-

core cluster, there 

are three levels of communication as shown in 

Figure 1. The communication between two 

processors on the same chip is referred to as intra-

CMP communication in this paper. The 

communication across chips but within a node is 

referred to as inter-CMP communication. And the 

communication between two processors on 

different nodes is referred to as 

inter-node communication. 

     Multi-core cluster imposes new challenges in 

software design, both on middleware level and 

application level. How to design multi-core aware 

parallel programs and communication middleware 

to get optimal performance is a hot topic. 

 
III. DESIGN OF EXPERIMENTS FOR EVALUATING 

MULTICORE CLUSTERS 

In this section we describe the evaluation 

methodology and explain the design and rational of 

each experiment. 

 
A. Programming Model and Benchmarks 

We choose to use MPI [4] as the programming 

model because it is the de facto standard used in 

cluster computing. The MPI library used is 

MVAPICH2 [5], which is a high performance 

MPI-2 implementation over InfiniBand [2]. In 

MVAPICH2, intra-node communication, including 

both intra-CMP and inter-CMP, is achieved by user 

level memory copy. 

We evaluate both microbenchmarksand application 

level benchmarks to get a comprehensive 

understanding on the system. Microbenchmarks 

include latency and bandwidth tests. And 

application level benchmarks include HPL from 

HPCC benchmark suite [16], NAMD [21] apoa1 

data set, and NAS parallel benchmarks [12]. 

 
B. Design of Experiments 

We have designed to carry out four sets of 

experiments for our study: latency and bandwidth, 

message distribution, potential bottleneck 

identification, and scalability tests. We describe 

them in detail below. 



 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100123 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 260 
 

 Latency and Bandwidth: These are standard 

ping-pong latency and bandwidth tests to 

characterize the three levels of communication 

in multi-core cluster: intraCMP, inter-CMP, 

and inter-node communication.  

 Message Distribution: We define message 

distribution as a two dimensional metric. One 

dimension is with respect to the 

communication channel, i.e. the percentage of 

traffic going through intra-CMP, inter-CMP, 

and inter-node respectively. The other 

dimension is in terms of message size. This 

experiment is very important because 

understanding message distribution facilitates 

communication middleware developers, e.g. 

MPI implementors, to optimize critical 

communication channels and message size 

range for applications. The message 

distribution is measured in terms of both 

number of messages and data volume.  

  Potential Bottleneck Identification: In this 

experiment, we run application level 

benchmarks on different configurations, e.g. 

four processes on the same node, four 

processes on two different nodes, and four 

processes on four different nodes. We want to 

discover the potential bottlenecksin multi-core 

cluster if any, and explore approaches to 

alleviate or eliminate the bottlenecks. This will 

give insights to application writers how to 

optimize algorithms and/or data distribution 

for multicore cluster. We also design an 

example to demonstrate the effect of multi-

core aware algorithm. 

 Scalability Tests: This set of experiments is 

carried out to study the scalability of multi-

core cluster. 

 
C. Processor Affinity 

In all our experiments, we use sched affinity 

system call to ensure the binding of process with 

processor. The effect of processor affinity is two-

fold. First, it eases our analysis, 

because we know exactly the mapping of processes 

with processors. And second, it makes application 

performance more stable, because process 

migration requires cache invalidation and may 

degrade performance. 

 
IV. EVALUATION PLATFORMS 

Our evaluation system consists of 4 Intel Bensley 

systems connected by InfiniBand. Each node is 

equipped with two sets of dual-core 2.6GHz 

Woodcrest processor, i.e. 4 processors per node. 

Two processors on the same chip share a 4MB L2 

cache. The overall architecture is similar to that 

shown in the right box in Figure 1. However, 

Bensley system has added more dedicated memory 

bandwidth per processor by doubling up on 

memory buses, with one bus dedicated to each of 

Bensley's two CPU chips. The InfiniBand HCA is 

Mellanox MT25208 DDR and the operating system 

is Linux 2.6. 

               To compare scalability, we also used a 

single-core Intel cluster connected by InniBand. 

Each node is equipped with dual Intel Xeon 

3.6GHz processor and each processor has a 2MB 

L2 cache. 

 
V.        EVALUATION RESULTS 

In this section we present the experimental results 

and analyze them in depth. We use the format pxq 

to represent a configuration. Here p is the number 

of nodes, and q is the number of processors per 

node. 

 
A. Latency and Bandwidth 

 
Figure 2 shows the basic latency and bandwidth of 

the three levels of communication in a multi-core 

cluster. The numbers are taken at the MPI level. 

The small message latency is 0.42us, 0.89us, and 

2.83us for intra-CMP, interCMP, and inter-node 

communication respectively. The corresponding 

peak bandwidth is 6684MB/s, 1258MB/s, and 

1532MB/s. 

     From Figure 2 we can see that intra-CMP 

performance is far better than inter-CMP and inter-

node performance, especially for small and 

medium messages. This is because 

in Intel Bensley system two cores on the same chip 

share the same L2 cache. Therefore, the 

communication just involves two cache operations 

if the communication buffers 

are in the cache. From the figure we can also see 

that for large messages, inter-CMP performance is 

not as good as inter-node performance, although 

memory performance is 

supposed to be better than network performance. 

This is because the intra-node communication is 

achieved through a shared buffer, where two 

memory copies are involved. On the other hand, 

the inter-node communication uses the Remote 

Direct Memory Access (RDMA) operation 

provided by InfiniBand and rendezvous protocol 

[20], which forms a 

zero-copy and high performance scheme. This also 

explains why for large messages (when the buffers 

are out of cache) intra-CMP and inter-node perform 

comparably. 

    This set of results indicate that to optimize MPI 

intranode communication performance, one way is 

to have better L2 cache utilization to keep 

communication buffers in the L2 cache as much as 

possible, and the other way is to reduce the number 

of memory copies. We have proposed a 

preliminary enhanced MPI intra-node 

communication design in our previous work. 

 



 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100123 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 261 
 

B. Message Distribution 

 

As mentioned in Section 3.2, this set of 

experiments is designed to get more insights with 

respect to the usage pattern of the communication 

channels, as well as the message size distribution. 

Figures 3 and 4 show the profiing results for 

NAMD and HPL respectively. The results for NAS 

benchmarks are listed in Table 1. The experiments 

are carried out on a 4x4 configuration and the 

numbers are the average of all the processes. 

         Figures 3 and 4 are interpreted as the 

following. Suppose there are n messages 

transferred during the application run, in which m 

messages are in the range(a,b]. Also suppose in 

these m messages, m1 are transferred through intra-

CMP, m2 through inter-CMP, and m3 through 

inter-node. Then: 

 Bar Intra-CMP(a, b] = m1/m  

 Bar Inter-CMP(a, b] = m2/m  

 Bar Inter-node(a, b] = m3/m  

 Point Overall(a, b] = m/n 

From Figure 3 we have observed that most of the 

messages in NAMD are of size 4KB to 64KB. 

Messages in this range take more than 90% of the 

total number of messages 

and byte volume. Optimizing medium message 

communication is important to NAMD 

performance. In the 4KB to 64KB message range, 

about 10% messages are transferred 

through intra-CMP, 30% are transferred through 

inter-CMP, and 60% are transferred through inter-

node. This is interesting and kind of surprising. 

Intuitively, in a cluster environment intra-node 

communication is much less than internode 

communication, because a process has much more 

inter-node peers than intra-node peers. E.g. in our 

testbed, a process has 1 intra-CMP peer, 2 inter-

CMP peers, and 15 inter-node peers. If a process 

has the same chance to communicate with every 

other process, then theoretically: 

 Intra-CMP = 6.7%  

 Inter-CMP = 13.3%  

 Inter-node = 80% 

If we call this distribution even distribution, then 

we see that intra-node communication in NAMD is 

well above that in even distribution, for almost all 

the message sizes. Optimizing intra-node 

communication is as important as optimizing inter-

node communication to NAMD. 

           From Figure 4 we observe that most 

messages are small messages in HPL, from 256 

bytes to 4KB. However, with respect to data 

volume messages larger than 256KB take 

more percentage. We also find that almost all the 

messages are transferred through intra-node in our 

experiment. However, this is a special case. In 

HPL, a process only talks to processes on the same 

row or column with itself. In our 4x4 configuration, 

a process and its row or column peers are always 

mapped to the same node, therefore, almost all the 

communication take place within a node. We have 

also conducted the same experiment on a 16x4 

configuration for HPL. The results show that 15% 

messages are transferred through intra-CMP, 42% 

through inter-CMP, and 43% through inter-node. 

Although the trend is not as 

extreme as in the 4x4 case, we can still see that 

intra-node communication in HPL is well above 

that in even distribution.  

Table 1 presents the total message distribution in 

NAS benchmarks, in terms of communication 

channel. Again, we see that the amount of intra-

node (intra-CMP and interCMP) communication is 

much larger than that in even distribution for most 

benchmarks. On an average, about 50% messages 

going through intra-node communication. This 

trend is not random. It is because most applications 

havecertain communication patterns, e.g. row or 

column based communication, ring based 

communication, etc. which increase the intra-node 

communication chance. Therefore, even in a large 

multi-core cluster, optimizing intra-node 

communication is critical to the overall application 

performance. 

 
C. Potential Cache and Memory Contention 

 

In this experiment, we run all the benchmarks on 

1x4,2x2, and 4x1 configurations respectively, to 

examine the potential bottleneck in the system. As 

mentioned in the beginning of Section 5, we use 

the format pxq to represent a configuration, in 

which p is the number of nodes, and q is the 

number of processors per node. The results are 

shown 

in Figure 5. The execution time is normalized to 

that on 4x1 configuration. 

 

 
 



 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100123 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 262 
 

   

 
Figure 1. Latency and Bandwidth in Multi-core 

Cluster 

 
D. Benefits of Data Tiling 

 
To study the benefits of data tiling on multi-core 

cluster, we design a micro benchmark, which does 

computation and communication in a ring-based 

manner. Each process has a piece of data (64MB) 

to be processed for a number of iterations. During 

execution, each process computes on its own data, 

sends them to its right neighbor and receives data 

from its left neighbor, and then starts another 

iteration of computation. In the original scheme, 

the data processed in the original chunk size 

(64MB) while in the data tiling scheme, the data 

are divided into smaller chunks in the size of 

256KB, which can easily fit in L2 cache. 

 

In the tiling case, since the intra-node 

communications using CPU-based memory copy, 

the data are actually preloaded into L2 cache 

during the communication. In addition, we observe 

that in the cases where 2 processes running on 2 

cores on the same chip, since most communication 

happens in L2cache in data tiling case, the 

improvement is most significant, around 70% 

percent. The improvement in the case where 4 

processes running on 4 cores on the same node, 8 

processes running on 2 nodes, and 16 processes 

running on 4 nodes is 60%, 50%, and 50% 

respectively. The improvements are not as large as 

that in the 2 process case because the 

communication of inter-CMP and inter-node is not 

as efficient as the intra-CMP for 256KB message 

size. 

 

E. Scalability 

 

Scalability is always an important angle to look at 

when evaluating clusters. Although our test bed 

only contains 4 nodes, we want to do an initial 

study on multi-core cluster scalability. We also 

compare the scalability of multi- core cluster with 

that of single-core cluster. The results are shown in 

Figure 2. It is to be noted that the performance is 

normalized to that on2 processes, so 8 is the ideal 

speedup forthe16processcase.  

 

It can be seen from Figure 2(a) that some 

applications show almost ideal speedup on multi-

core cluster, e.g. LU and MG. Compared with 

single-core cluster scalability, we find that for 

applications that show cache or memory 

contention, such as IS, FT, and CG, the scalability 

on single-core cluster is better than that on multi-

core cluster. For other applications such as MG, 

LU and NAMD, multi-core cluster shows the same 

scalability as single-core cluster. As an initial study 

we find that multi-core cluster is promising in 

scalability. 

 

 
Figure 2. Application Scalability 

 

 

 



 © 2014 IJIRT | Volume 1 Issue 4 | ISSN : 2349-6002 

IJIRT 100123 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 263 
 

VI.         CONCLUSIONS 

In this paper we have done a comprehensive 

performance evaluation, profiling, and analysis on 

multi-core cluster, using both micro benchmarks 

and application level benchmarks. We have several 

interesting observations from the experimental 

results that give insights to both application and 

communication middleware developers. From 

micro benchmark results, we see that there are 

three levels of communication in a multi-core 

cluster with different performances: intra-CMP, 

inter-CMP, and inter-node communication. Intra-

CMP has the best performance because data can be 

shared through L2 cache. Large message 

performance of inter-CMP is not as good as inter-

node because of memory copy cost. With respect to 

applications, the first observation is that counter-

intuitively, much more intra-node communication 

takes place in applications than that in even 

distribution, which indicates that optimizing intra-

node communication is as important as optimizing 

inter-node communication in a multi-core cluster. 

Another observation is that when all the cores are 

activated for execution, cache and memory 

contention may prevent the multi-core system from 

achieving best performance, because two cores on 

the same chip share the same L2 cache and 

memory controller. This indicates that 

communication middleware and applications 

should be written in a multi core aware manner to 

get optimal performance. We have demonstrated an 

example on application optimization technique 

which improves bench- mark performance by up to 

70%. Compared with single- core cluster, multi-

core cluster does not scale well for applications that 

show cache/memory contention. However, for 

other applications multi-core cluster has the same 

scalability as single-core cluster. 

 
REFERENCES 

[1] http://lse.sourceforge.net/numa/faq/. 

 

[2] MPI over InfiniBand Project. 

http://nowlab.cse.ohio- state.edu/projects/mpi-iba/. 

 

[3] D.H.Baileyetal. TheNASparallelbenchmarks. 

volume 5, pages 63–73, Fall1991. 

 

[4] Innovative Computing Laboratory (ICL). HPC 

Challenge Benchmark. http://icl.cs.utk.edu/hpcc/. 

 

[5] M. Koop, W. Huang, A. Vishnu, and D. K. 

Panda. Memory Scalability Evaluation of the Next-

Generation Intel Bensley Platformwith InfiniBand. 

In Hot Interconnect, 2006. 

 

[6] J. C. Phillips, G. Zheng, S. Kumar, and L. V. 

Kale. NAMD: Biomolecular Simulation on 

Thousands of Processors. In SuperComputing, 

2002. 

 


