
© September 2015 | IJIRT | Volume 2 Issue 4 | ISSN: 2349-6002

IJIRT 142612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 106

Parsing-based Machine Translation using an Open

Source Toolkit: Joshua for Tamil Language

B.P.Sreeja
1
, G.Saratha Devi

2

1
Assistant Professor, IT, Karpagam College of Engineering,

2
Assistant Professor, IT, Karpagam College of Engineering,

Coimbatore, Tamilnadu, India

Abstract- Joshua, an open source toolkit for statistical

machine translation. It implements all of the algorithms

required for synchronous context free grammars

(SCFGs): chart-parsing, n-gram language model

integration, beam-and cube-pruning and k-best

extraction. The toolkit also implements suffix-array

grammar extraction and minimum error rate training.

It uses parallel and distributed computing techniques

for scalability. In this paper, it is demonstrated that the

toolkit achieves state of the art translation performance

on the Tamil -English translation task.

Index Terms – Corpus, SCFGs.

I. INTRODUCTION

Large scale parsing-based statistical machine

translation (e.g., Chiang (2007), Quirk et al. (2005),

Galley et al. (2006), and Liu et al. (2006)) has made

remarkable progress in the last few years. However,

most of the systems mentioned above employ tailor-

made, dedicated software that is not open source. This

results in a high barrier to entry for other researchers,

and makes experiments difficult to duplicate and

compare. In this paper, it is described that Joshua, a

general-purpose open source toolkit for parsing-based

machine translation, serving the same role as Moses

(Koehn et al., 2007) does for regular phrase-based

ma-chine translation.

Our toolkit is written in Java and implements all

the essential algorithms described in Chiang (2007):

chart parsing, n gram language model integration,

beam and cube pruning, and k-best extraction. The

toolkit also implements suffix-array grammar

extraction (Lopez, 2007) and minimum error rate

training (Och, 2003). Additionally, parallel and

distributed computing techniques are exploited to

make it scalable (Li and Khudanpur,2008b). We have

also made great effort to ensure that our toolkit is easy

to use and to extend.

The toolkit has been used to translate roughly a

million sentences in a parallel corpus for large-scale

discriminative training experiments (Li and

Khudanpur, 2008a). We hope the release of the toolkit

will greatly contribute the progress of the syntax-

based machine translation research.
1

II. JOSHUA TOOLKIT

When designing the toolkit, the general principles of

software engineering is applied to achieve three major

goals: Extensibility, end-to-end coherence, and

scalability.

Extensibility: The Joshua code is organized into

separate packages for each major aspect of

functionality. In this way it is clear which files

contribute to a given functionality and researchers can

focus on a single package without worrying about the

rest of the system. Moreover, to minimize the

problems of unintended interactions and unseen

dependencies, which is common hindrance to

extensibility in large projects, all extensible

components are defined by Java interfaces. Where

there is a clear point of departure for researches, a

basic implementation of each interface is provided as

an abstract class to minimize the work necessary for

new extensions.

End-to-end Cohesion: There are many components

to a machine translation pipeline. One of the great

difficulties with current MT pipelines is that these

diverse components are often designed by separate

groups and have different file format and interaction

requirements. This leads to a large in-vestment in

scripts to convert formats and connect the different

components, and often leads to untenable and non-

portable projects as well as hindering repeatability of

experiments. To combat these issues, the Joshua

toolkit integrates most critical components of the

machine translation pipeline. Moreover, each

© September 2015 | IJIRT | Volume 2 Issue 4 | ISSN: 2349-6002

IJIRT 142612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 107

component can be treated as a stand-alone tool and

does not rely on the rest of the toolkit we provide.

Scalability: Our third design goal was to en-sure

that the decoder is scalable to large models and data

sets. The parsing and pruning algorithms are carefully

implemented with dynamic programming strategies,

and efficient data structures are used to minimize

overhead. Other techniques contributing to scalability

includes suffix array grammar extraction, parallel and

distributed decoding, and bloom filter language

models.

Below a short description about the main functions

implemented in the Joshua toolkit.

2.1 Training Corpus Sub-sampling

Rather than inducing a grammar from the full parallel

training data, made use of a method pro-posed by

Kishore Papineni (personal communication) to select

the subset of the training data consisting of sentences

useful for inducing a grammar to translate a particular

test set. This method works as follows: for the

development and test sets that will be translated,

every n-gram (up to length 10) is gathered into a map

W and associated with an initial count of zero.

Proceeding in order through the training data, for each

sentence pair whose source-to-target length ratio is

within one standard deviation of the average, if any n-

gram found in the source sentence is also found in W

with a count of less than k, the sentence is selected.

When a sentence is selected, the count of every n-

gram in W that is found in the source sentence is

incremented by the number of its occurrences in the

source sentence. For our submission, we used k = 20,

which resulted in 1.5 million (out of 23 million)

sentence pairs being selected for use as training data.

There were 30,037,600 English words and 30,083,927

Tamil words in the sub sampled training corpus.

2.2 Suffix-array Grammar Extraction

Hierarchical phrase-based translation requires a

translation grammar extracted from a parallel corpus,

where grammar rules include associated feature

values. In real translation tasks, the grammars

extracted from large training corpora are often far too

large to fit into available memory.

In such tasks, feature calculation is also very

expensive in terms of time required; huge sets of

extracted rules must be sorted in two directions for

relative frequency calculation of such features as the

translation probability p(f je) and reverse translation

probability p(ejf) (Koehn et al., 2003). Since the

extraction steps must be re-run if any change is made

to the input training data, the time required can be a

major hindrance to researchers, especially those

investigating the effects of tokenization or word

segmentation.

2.3 Decoding Algorithms

Grammar formalism: The decoder assumes a

probabilistic synchronous context-free grammar

(SCFG). Currently, it only handles SCFGs of the kind

extracted by Heiro (Chiang, 2007), but is easily

extensible to more general SCFGs (e.g., (Galley et al.,

2006)) and closely related formalisms like

synchronous tree substitution grammars (Eisner,

2003).

Chart parsing: Given a source sentence to de-code,

the decoder generates one-best or k-best translations

using a CKY algorithm. Specifically, the decoding

algorithm maintains a chart, which contains an array

of cells. Each cell in turn maintains a list of proven

items.

The parsing process starts with the axioms,

and proceeds by applying the inference rules

repeatedly to prove new items until proving a goal

item. Whenever the parser proves a new item, it adds

the item to the appropriate chart cell. The item also

maintains back Pointers to antecedent items, which

are used for k-best extraction.

Pruning: Severe pruning is needed in order to make

the decoding computationally feasible for SCFGs with

large target-language vocabularies. In our decoder, we

incorporate two pruning techniques: beam and cube

pruning (Chiang, 2007).

Hypergraphs and k-best extraction: For each source

language sentence, the chart parsing algorithm

produces a hypergraph, which represents an

exponential set of likely derivation hypotheses. Using

the k-best extraction algorithm (Huang and Chiang,

2005), extract the k most likely derivations from the

hypergraph.

Parallel and distributed decoding: parallel decoding

and a distributed language model is implemented by

exploiting multi-core and multi-processor

architectures and distributed computing techniques.

More details on these two features are provided by Li

and Khudanpur (2008b).

© September 2015 | IJIRT | Volume 2 Issue 4 | ISSN: 2349-6002

IJIRT 142612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 108

2.4 Language Models

In addition to the distributed LM mentioned above,

implement three local n-gram language models.

Specifically, A straightforward implementation of

the n-gram scoring function in Java is provided.

This Java implementation is able to read the

standard ARPA backoff n-gram models, and thus

the decoder can be used independently from the

SRILM toolkit.
3
 also provide a native code bridge

that allows the decoder to use the SRILM toolkit to

read and score n-grams. This native

implementation is more scalable than the basic

Java LM implementation. A Bloom Filter LM in

Joshua, following Talbot and Osborne (2007) is

also implemented

III. TRANSLATION TASK RESULTS

3.1 Training and Development Data

A very large Tamil-English training corpus

(Callison-Burch, 2009) is assembled by conducting

a web crawl that targeted bilingual web sites from

the Canadian government, the European Union,

and various international organizations like the

Amnesty International and the Olympic Commit-

tee. The crawl gathered approximately 40 million

files, consisting of over 1TB of data. We converted

pdf, doc, html, asp, php, etc. files into text, and

preserved the directory structure of the web crawl.

We wrote set of simple heuristics to transform

Tamil URLs onto English URLs, and considered

matching documents to be translations of each

other. This yielded 2 million Tamil documents

paired with their English equivalents. The

sentences and paragraphs in these documents are

divided,performed sentence-aligned them using

software that IBM Model 1 probabilities into

account (Moore, 2002), Filtered and reduplicated

the resulting parallel corpus. After discarding 630

thousand sentence pairs which had more than 100

words, the final corpus had 21.9 million sentence

pairs with 587,867,024 English words and

714,137,609 Tamil words.

The corpus to the other participants is distributed to

use in addition to the Tamil-English parallel corpus

(Koehn, 2005), which consists of approximately

1.4 million sentence pairs with 39 million English

words and 44 million Tamil words. The translation

model was trained on these corpora using the sub

sampling descried in Section 2.1

The module is also available as a standalone

applica-tion, Z-MERT that can be used with other

MT systems. (Software and documentation at:

http://cs.jhu.edu/ ˜ozaidan/zmert.of 21.2 million

English sentences with half a billion words. We

used SRILM to train a 5-gram language model

using a vocabulary containing the 500,000 most

frequent words in this corpus. Note that we did not

use the English side of the parallel corpus as

language model training data.

To tune the system parameters we used News

Test Set from WMT08 (Callison-Burch et al.,

2008), which consists of 2,051 sentence pairs with

43 thousand English words and 46 thousand Tamil

words. This is in domain data that was gathered

from the same news sources as the test set.

3.2 Translation Scores

The translation scores for four different systems are

reported in Table 1.
5

Baseline: In this system, use the GIZA++ toolkit,

a suffix array archi-tecture the SRILM toolkit and

minimum error rate training to obtain word

alignments, a translation model, language models,

and the optimal weights for combining these

models, respectively.

Minimum Bayes Risk Rescoring: In this sys-

tem, we re-ranked the n-best output of our base-line

system using Minimum Bayes Risk rescore the top

300 translations to minimize expected loss under

the Bleu metric.

Deterministic Annealing: In this system, in-stead

of using the regular MERT the training objective is

to minimize the one best error, to use the

deterministic annealing training procedure

described, the objective is to minimize the expected

error (together with the entropy regularization

technique).

Variational Decoding: Statistical models in

machine translation exhibit spurious ambiguity.

That is, the probability of an output string is split

among many distinct derivations (e.g., trees or

segmentations). In principle, the goodness of a

string is measured by the total probability of its

many derivations. However, finding the best string

(e.g., during decoding) is then computationally in-

tractable. Therefore, most systems use a simple

© September 2015 | IJIRT | Volume 2 Issue 4 | ISSN: 2349-6002

IJIRT 142612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 109

Viterbi approximation that measures the goodness

System BLEU-4

Joshua Baseline 28.81

Minimum Bayes Risk Rescoring 30.11

Deterministic Annealing 23.01

Variational Decoding 25.43

Table 1: The uncased BLEU scores on Tamil-

English Task.

The test set consists of 2525 segments, each

with one reference translation of a string using only

its most probable derivation. Instead, we develop a

variational approximation, which considers all the

derivations but still allows tractable decoding.

More details will be provided . In this system, both

deterministic annealing (for training) and

variational decoding (for decoding) is used.

IV. CONCLUSION

In this paper, a scalable toolkit for parsing-based

machine translation is described. It is written in

Java and implements all the essential algorithms

de-scribed. Chart-parsing, n-gram language model

integration, beam- and cube-pruning, and k-best

extraction is also described. The toolkit also

implements suffix-array grammar extraction and

minimum error rate training .Additionally, parallel

and distributed computing techniques are exploited

to make it scalable. The decoder achieves state of

the art translation performance.

REFERENCES

[1] Chris Callison-Burch, Colin Bannard, and Josh

Schroeder. 2005. Scaling phrase-based statisti-cal

machine translation to larger corpora and longer

phrases. In Proceedings of ACL.

[2] Chris Callison-Burch, Cameron Fordyce,

Philipp Koehn, Christof Monz, and Josh Schroeder.

2008. Further meta-evaluation of machine

translation. In Proceedings of the Third Workshop

on Statistical Machine Translation (WMT0

[3] Chris Callison-Burch. 2009. A 10
9
 word

parallel cor-pus. In preparation.

[4] David Chiang. 2007. Hierarchical phrase-

based trans-lation. Computational Linguistics,

33(2):201–228.

 [5] Jason Eisner. 2003. Learning non-isomorphic

tree mappings for machine translation. In

Proceedings of ACL.

 [6] Michel Galley, Jonathan Graehl, Kevin Knight,

Daniel Marcu, Steve DeNeefe, Wei Wang, and

Ignacio Thayer. 2006. Scalable inference and

training of context-rich syntactic translation

models. In Pro-ceedings of the ACL/Coling.

 [7] Liang Huang and David Chiang. 2005. Better k-

best parsing. In Proceedings of the International

Work-shop on Parsing Technologies.

 [8] Philipp Koehn, Franz Josef Och, and Daniel

Marcu. 2003. Statistical phrase-based translation.

In Pro-ceedings of HLT/NAACL.

 [9] Philipp Koehn, Hieu Hoang, Alexandra Birch,

Chris Callison-Burch, Marcello Federico, Nicola

Bertoldi, Brooke Cowan, Wade Shen, Christine

Moran, Richard Zens, Chris Dyer, Ondrej Bojar,

Alexandra Constantin, and Evan Herbst. 2007.

Moses: Open source toolkit for statistical machine

translation. In Proceedings of the ACL-2007 Demo

and Poster Sessions.

 [10] Philipp Koehn. 2005. A parallel corpus for

statistical machine translation. In Proceedings of

MT-Summit, Phuket, Thailand.

 [11] Shankar Kumar and William Byrne. 2004.

Minimum bayes-risk decoding for statistical

machine transla-tion. In Proceedings of

HLT/NAACL.

 [12] Zhifei Li and Sanjeev Khudanpur. 2008a.

Large-scale discriminative n-gram language

models for statisti-cal machine translation. In

Proceedings of AMTA.

[13] Zhifei Li and Sanjeev Khudanpur. 2008b. A

scalable decoder for parsing-based machine

translation with equivalent language model state

maintenance. In Proceedings Workshop on Syntax

and Structure in Statistical Translation.

 [14] Zhifei Li, Chris Callison-Burch, Sanjeev

Khudanpur, and Wren Thornton. 2009a. Decoding

© September 2015 | IJIRT | Volume 2 Issue 4 | ISSN: 2349-6002

IJIRT 142612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 110

in joshua: Open source, parsing-based machine

translation.The Prague Bulletin of Mathematical

Linguistics, 91:47–56.

 [15] Zhifei Li, Jason Eisner, and Sanjeev

Khudanpur. 2009b. Variational decoding for

statistical machine translation. In preparation.

[16] Yang Liu, Qun Liu, and Shouxun Lin. 2006.

Tree-to-string alignment templates for statistical

machine translation. In Proceedings of the

ACL/Coling

[17] Robert C. Moore. 2002. Fast and accurate

sentence alignment of bilingual corpora. In

Proceedings of AMTA.

[18] Franz Josef Och and Hermann Ney. 2003. A

sys-tematic comparison of various statistical

alignment models. Computational Linguistics,

29(1):19–51.

[19] Franz Josef Och. 2003. Minimum error rate

training for statistical machine translation. In

Proceedings of ACL.

[20] Chris Quirk, Arul Menezes, and Colin Cherry.

2005. Dependency treelet translation: Syntactically

in-formed phrasal smt. In Proceedings of ACL.

[21] David A. Smith and Jason Eisner. 2006.

Minimum risk annealing for training log-linear

models. In Pro-ceedings of the ACL/Coling.

[22] Andreas Stolcke. 2002. SRILM - an extensible

lan-guage modeling toolkit. In Proceedings of the

Inter-national Conference on Spoken Language

Process-ing, Denver, Colorado, September.

[23] David Talbot and Miles Osborne. 2007.

Randomised language modelling for statistical

machine transla-tion. In Proceedings of ACL.

[24] Omar F. Zaidan. 2009. Z-MERT: A fully

configurable open source tool for minimum error

rate training of machine translation systems. The

Prague Bulletin of Mathematical Linguistics,

91:79–88.

