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Abstract- Joshua, an open source toolkit for statistical 

machine translation. It implements all of the algorithms 

required for synchronous context free grammars 

(SCFGs): chart-parsing, n-gram language model 

integration, beam-and cube-pruning and k-best 

extraction. The toolkit also implements suffix-array 

grammar extraction and minimum error rate training. 

It uses parallel and distributed computing techniques 

for scalability. In this paper, it is demonstrated that the 

toolkit achieves state of the art translation performance 

on the Tamil -English translation task. 

Index Terms – Corpus, SCFGs. 

I. INTRODUCTION 

Large scale parsing-based statistical machine 

translation (e.g., Chiang (2007), Quirk et al. (2005), 

Galley et al. (2006), and Liu et al. (2006)) has made 

remarkable progress in the last few years. However, 

most of the systems mentioned above employ tailor-

made, dedicated software that is not open source. This 

results in a high barrier to entry for other researchers, 

and makes experiments difficult to duplicate and 

compare. In this paper, it is described that Joshua, a 

general-purpose open source toolkit for parsing-based 

machine translation, serving the same role as Moses 

(Koehn et al., 2007) does for regular phrase-based 

ma-chine translation. 

 

Our toolkit is written in Java and implements all 

the essential algorithms described in Chiang (2007): 

chart parsing, n gram language model integration, 

beam and cube pruning, and k-best extraction. The 

toolkit also implements suffix-array grammar 

extraction (Lopez, 2007) and minimum error rate 

training (Och, 2003). Additionally, parallel and 

distributed computing techniques are exploited to 

make it scalable (Li and Khudanpur,2008b). We have 

also made great effort to ensure that our toolkit is easy 

to use and to extend. 

 

The toolkit has been used to translate roughly a 

million sentences in a parallel corpus for large-scale 

discriminative training experiments (Li and 

Khudanpur, 2008a). We hope the release of the toolkit 

will greatly contribute the progress of the syntax-

based machine translation research.
1
 

II. JOSHUA TOOLKIT 

When designing the toolkit, the general principles of 

software engineering is applied to achieve three major 

goals: Extensibility, end-to-end coherence, and 

scalability. 

 

Extensibility: The Joshua code is organized into 

separate packages for each major aspect of 

functionality. In this way it is clear which files 

contribute to a given functionality and researchers can 

focus on a single package without worrying about the 

rest of the system. Moreover, to minimize the 

problems of unintended interactions and unseen 

dependencies, which is common hindrance to 

extensibility in large projects, all extensible 

components are defined by Java interfaces. Where 

there is a clear point of departure for researches, a 

basic implementation of each interface is provided as 

an abstract class to minimize the work necessary for 

new extensions. 

 

End-to-end Cohesion: There are many components 

to a machine translation pipeline. One of the great 

difficulties with current MT pipelines is that these 

diverse components are often designed by separate 

groups and have different file format and interaction 

requirements. This leads to a large in-vestment in 

scripts to convert formats and connect the different 

components, and often leads to untenable and non-

portable projects as well as hindering repeatability of 

experiments. To combat these issues, the Joshua 

toolkit integrates most critical components of the 

machine translation pipeline. Moreover, each 
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component can be treated as a stand-alone tool and 

does not rely on the rest of the toolkit we provide. 

Scalability: Our third design goal was to en-sure 

that the decoder is scalable to large models and data 

sets. The parsing and pruning algorithms are carefully 

implemented with dynamic programming strategies, 

and efficient data structures are used to minimize 

overhead. Other techniques contributing to scalability 

includes suffix array grammar extraction, parallel and 

distributed decoding, and bloom filter language 

models. 

Below  a short description about the main functions 

implemented in the Joshua toolkit. 

 

2.1 Training Corpus Sub-sampling  

 

Rather than inducing a grammar from the full parallel 

training data, made use of a method pro-posed by 

Kishore Papineni (personal communication) to select 

the subset of the training data consisting of sentences 

useful for inducing a grammar to translate a particular 

test set. This method works as follows: for the 

development and test sets that will be translated, 

every n-gram (up to length 10) is gathered into a map 

W and associated with an initial count of zero. 

Proceeding in order through the training data, for each 

sentence pair whose source-to-target length ratio is 

within one standard deviation of the average, if any n-

gram found in the source sentence is also found in W 

with a count of less than k, the sentence is selected. 

When a sentence is selected, the count of every n-

gram in W that is found in the source sentence is 

incremented by the number of its occurrences in the 

source sentence. For our submission, we used k = 20, 

which resulted in 1.5 million (out of 23 million) 

sentence pairs being selected for use as training data. 

There were 30,037,600 English words and 30,083,927 

Tamil words in the sub sampled training corpus. 

 

2.2 Suffix-array Grammar Extraction  

 

Hierarchical phrase-based translation requires a 

translation grammar extracted from a parallel corpus, 

where grammar rules include associated feature 

values. In real translation tasks, the grammars 

extracted from large training corpora are often far too 

large to fit into available memory. 

In such tasks, feature calculation is also very 

expensive in terms of time required; huge sets of 

extracted rules must be sorted in two directions for 

relative frequency calculation of such features as the 

translation probability p(f je) and reverse translation 

probability p(ejf ) (Koehn et al., 2003). Since the 

extraction steps must be re-run if any change is made 

to the input training data, the time required can be a 

major hindrance to researchers, especially those 

investigating the effects of tokenization or word 

segmentation. 

 

2.3 Decoding Algorithms 

 

Grammar formalism: The decoder assumes a 

probabilistic synchronous context-free grammar 

(SCFG). Currently, it only handles SCFGs of the kind 

extracted by Heiro (Chiang, 2007), but is easily 

extensible to more general SCFGs (e.g., (Galley et al., 

2006)) and closely related formalisms like 

synchronous tree substitution grammars (Eisner, 

2003). 

 

Chart parsing: Given a source sentence to de-code, 

the decoder generates one-best or k-best translations 

using a CKY algorithm. Specifically, the decoding 

algorithm maintains a chart, which contains an array 

of cells. Each cell in turn maintains a list of proven 

items.  

The parsing process starts with the axioms, 

and proceeds by applying the inference rules 

repeatedly to prove new items until proving a goal 

item. Whenever the parser proves a new item, it adds 

the item to the appropriate chart cell. The item also 

maintains back Pointers to antecedent items, which 

are used for k-best extraction. 

 

Pruning: Severe pruning is needed in order to make 

the decoding computationally feasible for SCFGs with 

large target-language vocabularies. In our decoder, we 

incorporate two pruning techniques: beam and cube 

pruning (Chiang, 2007). 

 

Hypergraphs and k-best extraction: For each source 

language sentence, the chart parsing algorithm 

produces a hypergraph, which represents an 

exponential set of likely derivation hypotheses. Using 

the k-best extraction algorithm (Huang and Chiang, 

2005), extract the k most likely derivations from the 

hypergraph. 

 

Parallel and distributed decoding: parallel decoding 

and a distributed language model is implemented by 

exploiting multi-core and multi-processor 

architectures and distributed computing techniques. 

More details on these two features are provided by Li 

and Khudanpur (2008b). 
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2.4 Language Models  

 

In addition to the distributed LM mentioned above,  

implement three local n-gram language models. 

Specifically, A straightforward implementation of 

the n-gram scoring function in Java is provided. 

This Java implementation is able to read the 

standard ARPA backoff n-gram models, and thus 

the decoder can be used independently from the 

SRILM toolkit.
3
 also provide a native code bridge 

that allows the decoder to use the SRILM toolkit to 

read and score n-grams. This native 

implementation is more scalable than the basic 

Java LM implementation. A Bloom Filter LM in 

Joshua, following Talbot and Osborne (2007) is 

also implemented 

III. TRANSLATION TASK RESULTS 

3.1 Training and Development Data  

 

A very large Tamil-English training corpus 

(Callison-Burch, 2009) is assembled by conducting 

a web crawl that targeted bilingual web sites from 

the Canadian government, the European Union, 

and various international organizations like the 

Amnesty International and the Olympic Commit-

tee. The crawl gathered approximately 40 million 

files, consisting of over 1TB of data. We converted 

pdf, doc, html, asp, php, etc. files into text, and 

preserved the directory structure of the web crawl. 

We wrote set of simple heuristics to transform 

Tamil URLs onto English URLs, and considered 

matching documents to be translations of each 

other. This yielded 2 million Tamil documents 

paired with their English equivalents. The 

sentences and paragraphs in these documents are 

divided,performed sentence-aligned them using 

software that IBM Model 1 probabilities into 

account (Moore, 2002), Filtered and reduplicated 

the resulting parallel corpus. After discarding 630 

thousand sentence pairs which had more than 100 

words, the final corpus had 21.9 million sentence 

pairs with 587,867,024 English words and 

714,137,609 Tamil words. 

 

The corpus to the other participants is distributed to 

use in addition to the Tamil-English parallel corpus 

(Koehn, 2005), which consists of approximately 

1.4 million sentence pairs with 39 million English 

words and 44 million Tamil words. The  translation 

model was trained on these corpora using the sub 

sampling descried in Section 2.1 

 

The module is also available as a standalone 

applica-tion, Z-MERT that can be used with other 

MT systems. (Software and documentation at: 

http://cs.jhu.edu/ ˜ozaidan/zmert.of 21.2 million 

English sentences with half a billion words. We 

used SRILM to train a 5-gram language model 

using a vocabulary containing the 500,000 most 

frequent words in this corpus. Note that we did not 

use the English side of the parallel corpus as 

language model training data. 

 

To tune the system parameters we used News 

Test Set from WMT08 (Callison-Burch et al., 

2008), which consists of 2,051 sentence pairs with 

43 thousand English words and 46 thousand Tamil 

words. This is in domain data that was gathered 

from the same news sources as the test set. 

 

3.2 Translation Scores  

 

The translation scores for four different systems are 

reported in Table 1.
5
 

Baseline: In this system, use the GIZA++ toolkit, 

a suffix array archi-tecture the SRILM toolkit  and 

minimum error rate training to obtain word 

alignments, a translation model, language models, 

and the optimal weights for combining these 

models, respectively. 

 

Minimum Bayes Risk Rescoring: In this sys-

tem, we re-ranked the n-best output of our base-line 

system using Minimum Bayes Risk  rescore the top 

300 translations to minimize expected loss under 

the Bleu metric. 

 

Deterministic Annealing: In this system, in-stead 

of using the regular MERT the training objective is 

to minimize the one best error, to use the 

deterministic annealing training procedure 

described, the objective is to minimize the expected 

error (together with the entropy regularization 

technique). 

Variational Decoding: Statistical models in 

machine translation exhibit spurious ambiguity. 

That is, the probability of an output string is split 

among many distinct derivations (e.g., trees or 

segmentations). In principle, the goodness of a 

string is measured by the total probability of its 

many derivations. However, finding the best string 

(e.g., during decoding) is then computationally in-

tractable. Therefore, most systems use a simple 
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Viterbi approximation that measures the goodness 

 

 

System BLEU-4 

  

Joshua Baseline 28.81 

Minimum Bayes Risk Rescoring 30.11 

Deterministic Annealing 23.01 

Variational Decoding 25.43 

 

Table 1: The uncased BLEU scores on Tamil-

English Task.  

The test set consists of 2525 segments, each 

with one reference translation of a string using only 

its most probable derivation. Instead, we develop a 

variational approximation, which considers all the 

derivations but still allows tractable decoding. 

More details will be provided . In this system, both 

deterministic annealing (for training) and 

variational decoding (for decoding) is used. 

IV. CONCLUSION 

In this paper, a scalable toolkit for parsing-based 

machine translation is described. It is written in 

Java and implements all the essential algorithms 

de-scribed. Chart-parsing, n-gram language model 

integration, beam- and cube-pruning, and k-best 

extraction is also described. The toolkit also 

implements suffix-array grammar extraction and 

minimum error rate training .Additionally, parallel 

and distributed computing techniques are exploited 

to make it scalable. The decoder achieves state of 

the art translation performance. 
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