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Abstract- In the contemporary world, communication 

has got many applications such as telephonic 

conversations etc. in which the messages are encoded 

into the communication channel and then decoding it at 

the receiver end. During the transfer of message, the 

data might get corrupted due to lots of conflicts in the 

communication channel. So it is essential for the 

decoder tool to also have a function of correcting the 

error that might happen. Reed Solomon codes are type 

of burst error detecting codes which has got many 

applications due to its burst error detection and 

correction nature. 

Index Terms- Reed-Solomon (RS), Galois Field (GS), 

Block length, Bit Error Rate (BER), Signal Noise Ratio 

(SNR) 

I. INTRODUCTION 

Channel coding is an important signal processing 

operation for the efficient transmission of digital 

information over the channel. In channel coding the 

number of symbols in the source encoded message is 

increased in a controlled manner in order to facilitate 

two basic objectives at the receiver one is Error 

detection and other is error correction. Error 

detection and error correction to achieve good 

communication is also employed in devices. It is used 

to reduce the level of noise and interferences in 

electronic medium. The amount of error detection 

and correction required and its effectiveness depends 

on the signal to noise ratio (SNR) [1]. A channel code 

is a broadly used term mostly referring to the forward 

error correction code. Forward error correction (FEC) 

is a system of error control for data transmission, 

whereby the sender adds redundant data to its 

messages, also known as an error correction code. 

This allows the receiver to detect and correct errors 

without the need to ask the sender for additional data. 

FEC is applied where retransmissions are relatively 

costly or impossible. FEC information is usually 

added to most mass storage devices to protect against 

damage to the stored data [2]. There are many types 

of block codes, but the most notable is Reed Solomon 

coding, Golay, BCH, Multidimensional parity, and 

Hamming codes are other example of block codes. 

Reed Solomon is an error-correcting coding system 

that was devised to address the issue of correcting 

multiple errors – especially burst-type errors in mass 

storage devices (hard disk drives, DVD, barcode 

tags), wireless and mobile communications units, 

satellite links, digital TV, digital video broadcasting 

(DVB), and modem technologies like xDSL [3]. 

Reed-Solomon codes are an important subset of non-

binary cyclic error correcting code and are the most 

widely used codes in practice. These codes are used 

in wide range of applications in digital 

communications and data storage. Reed Solomon 

describes a systematic way of building codes that 

could detect and correct multiple random symbol 

errors. By adding t check symbols to the data, an RS 

code can detect any combination of up to t erroneous 

symbols, or correct up to ⌊t/2⌋ symbols. Furthermore, 

RS codes are suitable as multiple-burst bit-error 

correcting codes, since a sequence of b + 1 

consecutive bit errors can affect at most two symbols 

of size b. The choice of t is up to the designer of the 

code, and may be selected within wide limits.  

II. RELATED WORKS 

After getting familiarized with classification and 

properties of forward error correction codes some of 

the error detection and correction codes are explained 

and compared in this section. 

• Hamming Code - In a hamming encoder parity bits 

are inserted into the message bits. These parity bits 

are decided so as to impose a fixed parity on different 

combinations of data and parity bits. In decoder those 

combinations are checked for that fixed parity. 
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Accordingly decoder parity bits are set. Binary 

equivalent of this combination decides the location of 

the error. Then that particular bit is flipped to correct 

the data. Hamming code is a single error correction 

code. Double errors can be detected if no correction 

is attempted. 

• Berger Code - Berger code is a unidirectional error 

detection code. It means it can only detect error either 

'1' flipped to '0' or '0' flipped to '1' but not both in a 

single code. If designed for detecting errors with '1' 

flipped to '0' then binary equivalent of number of 0s 

in the message is sent along with the message. 

Similarly when design for detecting '0' flipped to '1' 

error binary equivalent of the number of 1s in the 

message are sent along with the message. Decoder 

compares the number of 0s or 1s as per the design 

with the binary equivalent received. Mismatch 

between the two indicates the error. It can be used 

where error is expected to be unidirectional. 

• Constant weight code -In this code a valid code 

word always have a constant weight. It means 

number of 1s in a valid code word is fixed. Hence 

any variation in this is an indication of error. It is 

simple but not efficient way of encoding as multiple 

errors can cancel out each other. 

• M out of N code - In an M out of N encoder 

message is mapped to a N bit code word having M 

number of 1s in it. The N-M bits of message are 

appended with additional M number of bits which are 

used to adjust the number of 1s in the code. If the 

message consists of no 1s in it then all the M bits are 

set to '1'. It is also not an efficient code in terms of 

coding rate. 

• Erasure code - Erasure means error when its 

location is known in advance from previous 

experience. Erasure code is able to correct such 

errors. In this type of code the decoder circuit does 

not need an error locator as it is already known. 

Hence only error magnitude is calculated by the 

decoder to correct the erasure. 

• Low Density Parity check code - Low density 

parity check code is a linear block code. The message 

block is transformed into a code block by multiplying 

it with a transform matrix. Low density in the name 

implies low density of the transform matrix. That 

means number of 1s in the transform matrix is less. It 

is the best code as far as the coding gain is concerned 

but encoder and decoder design is complex. Mainly 

used in Digital Video Broadcasting. 

• Turbo Code - It is a convolutional code. Encoding 

is simple convolutional encoding. It is defined by (n, 

k, l) turbo code where n is the number of input bits, k 

is the number of output bits and l is the memory of 

the encoder. Decoding is done in two stages. First 

one is soft decoding stage then a hard decoding stage. 

It has very good error correcting capability i.e. 

coding gain. The main drawback is that it has low 

coding rate and high latency. Hence it is not suitable 

for many applications. But in case of satellite 

communication as the latency due to the distance 

itself is so high this additional latency is negligible. 

Hence it is used mainly in satellite communication. 

• Reed Solomon Code - Reed Solomon code is a 

linear cyclic systematic non-binary block code. In the 

encoder Redundant symbols are generated using a 

generator polynomial and appended to the message 

symbols. In decoder error location and magnitude are 

calculated using the same generator polynomial. 

Then the correction is applied on the received code. 

Reed Solomon code has less coding gain as 

compared to LDPC and turbo codes. But it has very 

high coding rate and low complexity. Hence it is 

suitable for many applications including storage and 

transmission. 

III. PROPOSED REED SOLOMON CODES 

In this section the encoder and decoder of REED 

SOLOMON is explained with the help of block 

diagrams. 

Encoder hardware: The pipelined calculation  

performed using the conventional encoder  circuit 

shown in Fig. 1. All the data paths shown provide for 

4-bit values. During the message input period, the 

selector passes the input values directly to the output 

and the AND gate is enabled. After the eleven 

calculation steps shown above have been completed 

(in eleven consecutive clock periods) the remainder is 

contained in the D-type registers. The control 

waveform then changes so that the AND gate 

prevents further feedback to the multipliers and the 

four remainder symbol values are clocked out of the 

registers and routed to the output by the selector. 
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Fig. 1 - A (15, 11) Reed-Solomon encoder 

Galois field adders: The adders of Fig. 1 perform 

bit-by-bit addition modulo-2 of 4-bit numbers and 

each consists of four 2-input exclusive-OR gates. The 

multipliers, however, can be implemented in a 

number of different ways. 

Galois field constant multipliers: Since each of 

these units is multiplying by a constant value, one 

approach would be to use a full multiplier and to fix 

one input. Even though a full multiplier is 

significantly more complicated, with an FPGA 

design, the logic synthesis process would strip out at 

least some of the unused circuitry.   

Dedicated logic constant multipliers: For the logic 

circuit approach, we can work out the required 

functionality by using a general polynomial 

representation of the input signal a3α3 + a2 α2 + a1α 

+a0. This is then multiplied by the polynomials 

denoted by the values 15, 3, 1 and 12 from Table 1.  

Table 1.

 
This involves producing a shifted version of the input 

for each non-zero coefficient of the multiplying 

polynomial. Where the shifted versions produce 

values in the α6, α5 or α4 columns, the 4-bit 

equivalents (from Table 1) are substituted. The bit 

values in each of the α3, α2, α1 and α0 columns are 

then added to give the required input bit contributions 

for each output bit. 

Look-up table constant multipliers: Alternatively, 

each multiplier can be implemented as a look-up 

table with 2m = 16 entries.  The  entry values can be 

obtained by cyclically shifting the non-zero elements 

from Table 1 according to the index of the 

multiplication factor. 

Code shortening: For a shortened version of the (15, 

11) code, for example a (12, 8) code, the first three 

terms of the message polynomial, equation (10), 

would be set to zero. 

The arrangement of the main units of a Reed-

Solomon decoder reflects, for the most part, the 

processes of the previous Section 

 
Fig. 2- Main processes of a Reed-Solomon decoder 

Thus, in Fig. 2, the first process is to calculate the 

syndrome values from the incoming code  word. 

These are then used to find the coefficients of the 

error locator polynomial Λ1 .... Λv and the error value 

polynomial Ω0 .... Ωv-1 using the Euclidean algorithm. 

The error locations are identified by the Chien search 

and the error values are calculated using Forney's 

method. As these  calculations involve all the 

symbols of the received code word, it is necessary to 

store the message until the results of the calculation 

are available.  Then, to correct the errors, each error 

value is  added (modulo 2) to the symbol at the 

appropriate location in the received code word.  

IV. SIMULATION RESULTS 

Reed Solomon Error Probability: Reed Solomon 

codes are mainly used for burst error correction. 

However the code has its own error correcting 

capability. So, the error probability plays a crucial 

role in saving our time detecting and correcting the 



© January 2016 | IJIRT | Volume 2 Issue 8 | ISSN: 2349-6002 

IJIRT 143264 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 116 
 

error. Let us assume that the code can correct 4 error 

symbols in an (255,251) RS code. A maximum of 32 

bits of error can be corrected. So, if we can calculate 

the bit error rate properly and then manage the 

syndrome calculation part as if the decoder calculates 

more than 32 bits of error, then send a signal that 

decoder cannot correct. Therefore plotting the bit 

error probability (P) against the SNR will help. We 

can have a range of SNR for which the error can be 

corrected. However the range will include many parts 

like the percentage of probability that the signal will 

get detected.  

 
Fig. 3: Graph between SNR and Bit error rate (BER) 

Fig. 3 shows the plot between bit error probability 

and SNR. The code is for a random of about 255 

symbols where each symbol contains 8 bits being 

transmitted. These 255 symbols form a code word. 

And there are about 500 such code words. However 

the range estimation for different capability of 

correcting errors can be calculated. 

V. CONCLUSION 

This paper presents clear understanding of Reed-

Solomon codes used in error detection and 

correction.The main purpose of this paper was to 

study the Reed-Solomon code encoding and decoding 

process and also the error probability for the RS 

code. The encoding process and the block diagram 

have been discussed and also the different step for 

decoding process has been discussed. The error 

probability for RS code shows that the BER 

performance also improves for large block length and 

shows a poor BER performance for lower SNR as the 

SNR value increases the curve becomes steeper. 
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