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Abstract— Mining frequent items is one of the most 

important research topics in data mining. In existing  

system  an effective bit-sequence based, one-pass 

algorithm, called MFI-Trans-SW (Mining Frequent 

Itemsets within a Transaction Sliding Window), to mine 

the set of frequent itemsets from data streams within a 

transaction  sliding window which consists of a fixed 

number of transactions.  MFI-TransSW algorithm 

consists of three phases: window initialization, window 

sliding and pattern generation. The existing system mines 

the frequent patterns for the recent  data only . In 

proposed system, we are going to mine the frequent 

patterns for overall all data. Even the historical data is 

useful when frequent patterns are mined. As soon as the 

transaction arrives , each incoming transaction is 

scanned . If the itemset exist in the transaction  the 

support count is incremented by 1. Otherwise the support 

count would remain same as it was. Frequent as well as 

infrequent patterns are maintained in the system. The 

proposed system not only attain highly accurate mining 

results, but also run significant faster than  existing 

algorithms for mining frequent itemsets from data 

streams without using a sliding window. 

 

Index Terms—frequent itemsets , data stream  

I.  INTRODUCTION 

 A data stream is a continuous, huge, fast changing, 

rapid, infinite sequence of data elements. We can say  

data stream is an ordered sequence of elements that 

arrives in timely order. It is assumed that the stream 

can only be scanned once and hence if an item is 

passed, it cannot be revisited, unless it is stored  in 

main memory. Different from data in traditional 

static datasets, data streams are continuous, 

unbounded, usually come with high speed and have a 

data distribution that often changes with time [1]. It is 

often refer to as streaming data. In this , it uses 

multiple segments for handling different size of 

windows over data streams. Storing  these segments 

in a data structure, the usage of memory can be 

optimized. Many applications generate large amount 

of data streams in real time, such as sensor data 

generated from sensor networks, online transaction 

flows in retail chains, Web record and click-streams 

in Web applications, call records in 

telecommunications, performance measurement in 

network monitoring and traffic management. 

 

Data streams can be further classified into offline 

data streams and online data streams. Offline data 

streams are characterized by regular bulk arrivals [4], 

such as a bulk addition of new transactions as in a 

data warehouse system. Online data streams are 

characterized by real-time updated data that come 

one by one in time, such as an a continuously 

generated transaction as in a network monitoring 

system. Bulk data processing is not possible for one 

streaming data. Due to the characteristics of data 

streams, there are some inherent challenges for 

mining streaming data [8]. First, each data element of 

stream should be examined at most once. Second, the 

memory usage in the process of mining data streams 

should be bounded even though new data elements 

are continuously generated from the streams. Third, 

each element due to the characteristics of data 

streams, there are some inherent challenges for 

mining streaming data. Fourth, the analytical outputs 

of the stream should be instantly available when the 

user requested. Finally, the errors of outputs should 

be constricted as small as possible. The continuous 

characteristic of streaming data makes it essential to 

use the algorithms which require only one scan over 

the stream for knowledge discovery. The huge nature 

of stream makes it impossible to store all the data 
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into main memory or even in secondary storage. This 

motivates the design of a summary data structure 

with small footprints that can support both one-time 

and continuous queries [5]. In other words, one-pass 

data stream mining algorithms have to sacrifice the 

correctness in the analytical results by allowing some 

counting errors. Consequently, previous multiple-

pass data mining algorithms studied for static datasets 

are not feasible for mining data streams. 

 

Frequent itemset mining is a KDD technique which is 

the basic of many other techniques, such as 

association rule mining, sequence pattern mining, 

classification, and clustering. It is impossible to 

maintain all the elements of data streams [3]. This 

rapid generation of continuous streams of 

information has challenged our storage, computation 

and communication capabilities in computing 

systems. Data Stream mining refers to informational 

structure extraction as models and patterns from 

continuous data streams [5]. Data Streams have 

different challenges in many aspects, such as 

computational, storage, querying and mining. Data 

stream mining differs from traditional data mining 

since its input of mining is data streams, while the 

latter focuses on mining (static) databases. Compared 

to traditional databases, mining in data streams has 

more constraints and requirements. The mining task 

should proceed normally and offer acceptable quality 

of This result, one good stream mining algorithm to 

possess efficient performance and high throughput 

[7]. Slight approximate errors occurred in the  mining   

result is usually acceptable by the user[2] [4]. 

 

                      II. EXISTING  SYSTEM 

Frequent itemset mining approaches have mainly 

considered the problem of mining transactional 

databases[9]. In these methods, transactions are 

stored in secondary storage so that multiple scans 

over the data can be performed. It accepts only one 

minimum support and using fixed window length. In 

these  method old data required many times. So, it 

needs huge memory to stored data. The traditional 

data mining methodology may not be valid in a data 

stream. Because it uses huge memory to store data, 

high processing power, several  iterations of the data, 

uses a uniform minimum support threshold[11]. Here 

an effective bit- sequence representation of items is 

used to reduce the time and memory needed to slide 

the windows. The three main phases of MFI-TranSW 

are  : Window Initialization Phase, Window Sliding 

Phase  &  Frequent Itemset Generation Phase. These 

phases are discussed below .  

 

2.1   Window Initialization Phase : 

The window initialization phase is activated while the 

number of transactions generated so far in a 

transaction data stream is less than or equal to a user 

predefined sliding window size  [6]. In this phase, 

each item of the new incoming transaction is 

transformed into its bit-sequence representation. 

 

2.2   Window Sliding Phase : 

The window sliding phase is activated after the 

current sliding window becomes full. A new 

incoming transaction is appended to the current 

sliding window, and the oldest transaction is removed 

from the window .  For removing oldest  information, 

a method is used in the  algorithm[1]. Based on the 

bit-sequence representation, MFI-TransSW algorithm 

uses the bitwise left shift operation to remove the 

aged transaction from the set of items in the current 

sliding window  .After sliding the window, an 

effective pruning method, called Item- Prune, is used 

to improve the memory usage. 

 

2.3  Frequent Itemset Generation Phase: 

The frequent itemsets generation phase is performed 

only when the up-to-date set of frequent  itemsets is 

requested [10]. Finally we get frequent itemsets for 

each particular window. 

 

           III. PROPOSED SYSTEM 

The existing system mines the frequent patterns for 

the recent  data only . We can also mine the frequent 

patterns for overall all data Even the historical data is 

useful when frequent pattern are mined. In the 

proposed system , as soon as the transaction arrives , 

each incoming transaction is scanned . If the itemset 
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exist in the transaction. The support count is 

incremented by 1. Otherwise the support count would 

remain same as it was. Once it is done for 1- itemset . 

Similarly the process is carried out for 2-itemset as 

well as for 3-itemset . The subsets are formed until no 

pairs are generated. As we are going to increment the 

counter in our proposed work for each and every 

itemsets. Here one problem may arise,  if the data 

would be of two or four years then how long we are 

going to maintain the counter. So  we are going to 

use the concept of data warehouse where for every 

previous month the past frequent as well as 

infrequent patterns  are dumped into the data 

warehouse and the counter will start again from one 

for the new month. Thus the memory usage will also 

reduced and the data will be preserved in the data 

warehouse 

In our proposed system we provide two options . We 

can mine patterns either monthly or overall. If month 

is selected than frequent patterns of that month are 

displayed. Frequent as well as infrequent patterns are 

maintained in the system. As no infrequent itemsets 

are discarded, the accuracy is  increased. Thus the 

proposed system maintains the set of frequent 

patterns for overall data also.Considered the below 

example for understanding the working of proposed 

system. Let the first two transactions in a transaction 

data stream be <T1 (abd)>,  <T2  (acd)> 

 

TRANSACTION 

 

ITEMS 

T1 a b d 

T2 a c d 

                          Table : 3.1 

 

Scan first transaction  as well as calculate support 

count of it. 

 

             ITEMSET 

 

SUPPORT 

COUNT 

a 1 

b 1 

d  1              

    Table : 3.2 

     Generating  2-itemsets. 

 

     ITEMSET 

 

SUPPORT COUNT 

ab 1 

ad 1 

bd  1             

                             Table : 3.3 

       Generating  3-itemsets 

 

             ITEMSET 

 

SUPPORT COUNT 

Abd 1 

 Table : 3.4 

 

Scanning new incoming transaction i.e  T2  [a c d] 

and calculating support count. 

 

        ITEMSET 

 

SUPPORT COUNT 

A 1 + 1 

B 1 

D 1 + 1 

C  1 

Table : 3.5 

Generating  2-itemsets  
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                    Table : 3.6 

Generating  3-itemsets 

 

                                Table : 3.7 

Thus the  frequent as well as infrequent itemsets are 

incremented and maintained in the indexing form. 

Thus we can also fetch the frequent patterns monthly,  

as all the patterns are  dumped and  preserved   into 

data warehouse . 

 

 

        IV. EXPERIMENTAL RESULTS 

 

 

We  have analyzed the results of  both  MFI-

TranSW and our proposed system. Clearly we 

can see here that the proposed system works 

better than the MFI-TranSW. All the parameters 

are compared below .    

 

 

 

SR 

No 

    

PARAMETERS 

 

MFI-

TranSW 

 

PROPOSED 

SYSTEM 

    1.  Execution Time                  

Number of 

transactions =100  

   

 3300 ms 

 

  456 ms 

    2. Execution Time                  

Number of 

transactions =800  

 

  8891 ms 

    

 4753 ms 

    3. Execution Time                  

Number of 

transactions =4000 

 

12056 ms 

 

8945 ms 

4. Execution Time                  

Number of 

transactions 

=10000 

 

187601 ms 

 

115593 ms 

5.  Number of  

frequent  patterns 

Approx  5 to 

6 Patterns 

Generated 

per window 

 

33  Patterns 

Generated 

                   Table : 4.1 

 

 

Figure 4.1  shows that the system  works efficiently 

even on different datasets. The execution time of 

proposed system is 

 

        ITEMSET 

    

 SUPPORT COUNT 

ab 1 

ad 1 + 1 

ac 1 + 1 

bd 1 

bc  1 

dc 1 + 1 

 

             ITEMSET 

 

SUPPORT COUNT 

abd  1  

abc  1  

acd  1 + 1 

adb     1  

bdc    1 
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less than  existing system even when different  no.  of 

transaction are considered. It proves that the 

proposed system takes nearly half time than MFI-

TranSW. 

 

Figure 4.2  shows  the numbers of frequent patterns 

generated in both the system. MFI-TranSW generated  

frequent patterns per window whereas proposed 

system generates the overall frequent patterns. 

 

      

 
Fig : 4.1 

 

       

 
                                             Fig : 4.2 

                V.  Conclusion 

We have isolated a number of issues in data streams, 

the purpose is to introduce the process of  mining 

frequent  patterns in data streams and particularly 

analyze  the performance of the  algorithm. We 

proposed a data mining method for finding overall 

frequent and infrequent items over  data stream. An 

efficient method  is used, for mining the set of 

frequent itemsets over data streams without a 

transaction sliding window. As we are going to 

increment the counter in our proposed work for each 

and every itemsets  .If the data would be of two or 

four years then maintain the counter would be a 

tedious task. So  we are going to use the concept of 

data warehouse where for every previous month the 

past frequent as well as infrequent patterns are 

dumped into the data warehouse and the counter will 

start  from one for the new month. Thus the memory 

usage will also reduced and the data will be secure in 

the data warehouse. The proposed system  provides 

us highly accurate mining results and the execution 

time is less than  existing algorithms for mining 

frequent itemsets from data streams without using a 

sliding window. We have used the static data streams 
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in the proposed system. In  future  we can use  online 

data streams for this system. 
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