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Abstract- The growing marketplace for clever home 

IoTdevices guarantees new conveniences for customers 

at the same time as imparting new challenges for 

keeping privateness inside the home. Internet of Things 

(IoT) devices regularly performs unique features, which 

can lead them to prone to attackers looking for to 

research sensitive consumer facts. In precise, user 

pastime can be inferred simply by using looking for 

peaks in visitors dispatched via IoT devices. Because 

this kind of inference is based on the shape of the traffic 

in preference to the data being sent, encryption does not 

protect against it. Our aim is to arm the builders of IoT 

device software with a library that they can use to 

obfuscate the traffic that their devices ship to save you 

this sort of attack. 
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I. INTRODUCTION 

Over the past few years, an increasing number and 

variety of devices, such as kitchen appliances, 

thermostats, televisions, and sensors of various types, 

have been outfitted with Internet connectivity 

capabilities. These devices are collectively referred to 

as the Internet of Things (IoT).Although they have 

the potential to revolutionize the way we live our 

lives for the better, these devices can also adversely 

impact personal security and privacy. Because 

IoTdevices often perform very specific functions, 

they are vulnerable to attackers seeking to learn 

sensitive user information. Apthorpe et al. [1] 

considered a threat model with an attacker who can 

observe Internet traffic in and out of a smart home 

and whose goal is to infer user activity. They showed 

that an adversary can detect when user events occur 

simply by looking for peaks in traffic flows. Because 

this kind of inference relies on the shape of the traffic 

flow rather than the information being sent, it is 

possible even when all traffic is encrypted [1]. User 

events differ across IoT devices and can reveal very 

specific information about user activities. A user 

event for a sleep monitor, for example, usually 

indicates that a user fell asleep or woke up. If 

adversaries know the identity of devices, which is 

typically easy to determine from their MAC 

addresses, then because devices are so often 

specialized, adversaries who detect user events can 

deduce information about what users are doing inside 

their own homes. 

To address this problem, Apthorpe et al. implemented 

router-based traffic shaping solution that enforced a 

constant rate of traffic. This approach completely 

protected user privacy and only required roughly 20 

KB/s of overhead bandwidth usage to shape the 

traffic of three IoT devices. Despite this, their 

solution is not necessarily ideal. First, the solution is 

implemented on the router rather than on the 

individual devices, which may not scale for a large 

number of devices in a home and does not allow 

much flexibility for different kinds of devices. The 

router solution also does  not protect against attacks 

where traffic is sniffed before reaching the router, 

e.g., by a malicious device in the home.  

 

Separate traffic into packet streams: An adversary 

must first divide recorded network traffic into 

meaningful streams that can be used for further 

analysis. In most standard consumer use cases, the 

home gateway router acts as a network address 

translator (NAT), rewriting local IP addresses of 

individual devices to a single public IP address given 

to the router by the ISP. This prevents an adversary 

from using IP addresses to divide traffic into per-

device packet sets. Identifying and counting distinct 

clients behind a NAT is a known problem [2, 6]. 

However, it is always possible to separate network 

traffic into streams by the external IP address of the 

server communicating with the devices (\service IP") 
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and, in cases where multiple devices use the same 

service IP, the TCP port rewritten by the NAT. While 

the devices we studied often communicate with 

multiple service IPs, we discovered that the adversary 

typically only needs to identify a single stream that 

encodes the device state. 

Label streams by type of device: Once individual 

streams have been separated, the adversary next 

identifies what IoT device most likely is  responsible 

for each stream. Knowing what devices a consumer 

owns can be a serious privacy violation by itself. For 

example, a consumer might not want an ISP knowing 

they own an IoT blood sugar monitor or pacemaker. 

In our case studies, the DNS queries associated with 

each stream could be mapped to a particular device. 

For example, the Nest Cam queried domains from 

dropcam.com (the predecessor to the Nest Cam), 

while the Sense sleep monitor queried domains  from 

hello.is (the company that makes the Sense). An 

adversary could use a laboratory setup like our own 

to learn these mappings or perform reverse DNS 

lookups to pair service IPs with device-identifying 

domain names. 

However, multiple devices from the same 

manufacturer might communicate with the same 

service IPs, making device identification using DNS 

more difficult. For example, the BelkinWeMoswitch 

queried domains that could have been used by any 

type of Belkin device. 

 

II. METHODS AND SCHEMES 

 

The  principal parameters of independent link and 

dependent hyperlink padding are the packet sizes and 

the interpackettime durations and past work has 

explored how those variables can excellently be 

altered to obfuscate user activity. Ithas been proven 

that absolutely padding or fragmenting packetlengths 

to a consistent size are not sufficient for hiding 

useractivity [3] and that using variable interpacket 

time intervals is extra effective at obfuscating user 

activity than consistent interpacket time periods [4]. 

Past studies have also shown that structured 

hyperlink padding can preserve anonymityin 

structures at risk of traffic flow evaluation attacks 

[5][6],however, due to the fact, those types of 

algorithms maintain the relativerelationships between 

high traffic rates  and low traffic rates,the attack we 

are concerned with would nonetheless be possible. 

We compare the privacy ensures of our library by 

means of the use of a framework heavily motivated 

with the aid of differential privacy[2]. We can think 

of differential privacy as follows. Say wehave 

databases that differ in one row and a query wewant 

to run on them. Suppose we've got a set of rules Q 

thatis implemented to both databases prior to jogging 

this question.Then, Q is stated to provide differential 

privacy if performinga statistical query on both 

databases will produce nearlyindistinguishable 

outcomes. We can construct an analogy todifferential 

privacy with our scenario: every consumer occasion 

islike one row in the database, our traffic shaping 

solution isanalogous to the feature Q, and the site 

visitors that the attackersees corresponds to the 

“effects” of the question. We will for this reasonname 

an implementation secure if the visitors generated 

through ourlibrary, whilst the event does arise, is 

statistically indistinguishable from the traffic 

generated by way of our library when theoccasion is 

eliminated. 

The fundamental conceptual tool of our method is the 

concept oftraffic shaping, which entails trying to 

force traffic to suitpre-exact distributions. To put into 

effect this shaping, ourlibrary plays data processing 

on each the sending andreceiving ends as follows. On 

the sending give up, we depend onan aggregate of 

fragmentation and padding to obscure person interest. 

We also sendtop traffic if important. Because 

weanticipate the tarffic is encrypted, top site visitors 

can encompassrandom bytes. On the receiving quit, 

we use simple processing to reconstruct unique 

messages. To facilitate thisreconstruction, we have 

created an easy protocol this isutilized by the sending 

stop to perform these adjustmentsand by means of the 

receiving give up to undo them.In terms of the real 

library, we determined to make thecapability of the 

calls as just like present send/get hold ofcalls as 

viable. This need to facilitate a extra seamless 

integration of our library into device code. Users of 

the libraryalso, offer inputs that select the parameters 

used within thepadding/fragmentation schemes. 

One vital decision we made in our solution changed 

into tobreak up devices into  categories: low-latency 

devices andhigh-latency devices. By “high-latency” 

devices, we implydevices that can tolerate longer 

delays, whereas“low-latency”are devices whose 

functionality might be adversely affectedby way of 

full-size delays. For instance, a snooze display is 
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aexcessive-latency tool because it does no longer 

depend on immediatelyresponses from a server, 

whereas a personal assistant likethe Amazon Echo is 

a low-latency tool because its capability depends on 

quick responses. High-latency devicesgive us extra 

freedom in how we form their traffic becausethey can 

tolerate longer delays, at the same time as low-

latency devicesare greater restrictive. Because we've 

got now not described a hardthe line between the 2 

categories, we consider that builders that experience 

that their devices may additionally straddle each 

classmay want to try each solution and notice which 

goes quality fortheir devices. 

For excessive-latency devices, we selected to form 

site traffic by means of permitting the builders to pick 

parameters for distributionsfor interpacket delays and 

packet sizes. While the device isrunning, we draw a 

postpone from the required distribution,look forward 

to that quantity of time, after which draw a packet 

lengthzefrom the specified distribution and send out a 

packet of thatsize. We maintain a queue of the 

information that the devicewants to send; if it is 

empty, we send out cover traffic, andif it is not, we 

send out fragmented or padded real traffic. 

 

III. DISCUSSIONS 

 

Weopened two terminals on the same machine: one 

terminalran the receiving (server) side code, while 

the other sideran the sending (client) side code. The 

client read in thetraffic file and called our send() 

functions at the times specified by the timestamps in 

the file. We used Wireshark tocapture traffic while 

the client side code was running. We repeated this 

procedure for one device at a time for both 

highlatency and low-latency devices.  

 

Figure 1: These two graphs show traffic sent by a 

Sense Sleep Monitor, a high-latency device, with and 

without our library. 

We experimented with a wide range of parameters 

for each device to measure the effect of each 

parameter on the efficacy of our solution. Here, we 

present case studies of a high-latency device, the 

Sense Sleep Monitor (Figure 1), and a low-latency 

device, the Nest Cam security camera (Figure 2).  

 
Figure 2: These two graphs show traffic sent by a 

Nest Cam security camera, a low-latency device, with 

and without our library. 

 

If we consult the differential privacy framework that 

we discussed earlier, we see thatboth the high-latency 

and low-latency solutions are secure.In the high-

latency solution, we are imposing a distributionof 

interpacket delays and packet sizes that is 

independentof the actual traffic being sent by the 

device, so the trafficgenerated by the solution when 

an event does occur will bestatistically 

indistinguishable from the traffic generated bythe 

solution in the absence of that event. Similarly, 

becausethe low-latency solution enforces a constant 

rate, the trafficgenerated by it will be statistically 

similar whether or not asingle event occurs. 

 

IV. CONCLUSION 

 

As discussed in the above the bandwidth 

consumption, the high-latency device sends out about 

4 KB/s of data on average, which, whenrelated to the 

capacities of a normal wireless LAN in theUS, is not 

a large amount of overhead (if we were to deploythis 

kind of solution in developing countries, we might 

haveto think of different approaches). The low-

latency solution,on the other hand, consumes around 
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31 KB/s of data onaverage for just the one device. 

Thus, while this solutionpreserves privacy, it does 

have a comparatively high overheadcost. 
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