
© January 2018 | IJIRT | Volume 4 Issue 8 | ISSN: 2349-6002

IJIRT 145219 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 52

Modified Algorithm for SQL Injection Detection in

Single and Nested Queries

Khushboo Gupta
1
, Sayar Singh Shekhawat

2

1
M. Tech. Scholar, Department of Computer Science ,Arya Institute of Engineering & Technology,

Jaipur, Rajasthan
2
 Head of Department, Department of Computer Science, Arya Institute of Engineering & Technology,

Jaipur, Rajasthan

Abstract- Today is the world of the information sharing

and the information is shared using the information

based websites, E-commerce websites. But every

category of website contains the information which is

protected by the login credentials but intruders try to

access such information using SQL Injection. Here in

this paper , we propose the algorithm , which is

simulated in the VS2010 and identifies the various types

of the SQL Injection like schema related queries,

tautologies, etc

Index Terms- Data Security, Hacking , SQL Injection.

1. INTRODUCTION

SQL injection attacks are one of the topmost threats

for applications written for the Web. These attacks

are launched through specially crafted user input on

web applications that use low level string operations

to construct SQL queries.SQL injection vulnerability

allows an attacker to flow commands directly to a

web application's underlying database and destroy

functionality or confidentiality. SQL injection

vulnerabilities have been described as one of the

most serious threats for Web applications [3, 11].

Web applications that are vulnerable to SQL injection

may allow an attacker to gain complete access to

their underlying databases. Because these databases

often contain sensitive consumer or user information,

the resulting security violations can include identity

theft, loss of confidential information, and fraud. In

some cases, attackers can even use an SQL injection

vulnerability to take control of and corrupt the system

that hosts the Web application. Web applications that

are vulnerable to SQL Injection Attacks (SQLIAs)

are widespread—a study by Gartner Group on over

300 Internet Web sites has shown that most of them

could be vulnerable to SQLIAs. In fact, SQLIAs have

successfully targeted high-profile victims such as

Travelocity, FTD.com, and Guess Inc.

SQL injection refers to a class of code-injection

attacks in which data provided by the user is included

in an SQL query in such a way that part of the user's

input is treated as SQL code. By leveraging these

vulnerabilities, an attacker can submit SQL

commands directly to the database. These attacks are

a serious threat to any Web application that receives

input from users and incorporates it into SQL queries

to an underlying database. Most Web applications

used on the Internet or within enterprise systems

work this way and could therefore be vulnerable to

SQL injection.

Permission to make digital or hard copies of all or

part of this work for personal or classroom use is

granted without fee provided that copies are not made

or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the

first page. To copy otherwise, to republish, to post on

servers or to redistribute to lists, requires prior

specific permission and/or a fee.

The cause of SQL injection vulnerabilities is

relatively simple and well understood: insufficient

validation of user input. To ad-dress this problem,

developers have proposed a range of coding

guidelines (e.g., [18]) that promote defensive coding

practices, such as encoding user input and validation.

A rigorous and systematic application of these

techniques is an effective solution for prevent-ing

SQL injection vulnerabilities. However, in practice,

the application of such techniques is human-based

and, thus, prone to errors. Furthermore, fixing legacy

code-bases that might contain SQL injection

vulnerabilities can be an extremely labour-intensive

task.

© January 2018 | IJIRT | Volume 4 Issue 8 | ISSN: 2349-6002

IJIRT 145219 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 53

Main cause of SQL injection:

Web application vulnerabilities are the main causes

of any kind of attack. In this section, vulnerabilities

that might exist naturally in web applications and can

be exploited by SQL injection attacks will be

presented:

Invalidated input: This is almost the most common

vulnerability on performing a SQLIA. There are

some parameters in web application, are used in SQL

queries. If there is no any checking for them so can

be abused in SQL injection attacks. These parameters

may contain SQL keywords, e.g. INSERT, UPDATE

or SQL control characters such as quotation marks

and semicolons.

Generous privileges: Normally in database the

privileges are defined as the rules to state which

database subject has access to which object and what

operation are associated with user to be allowed to

perform on the objects. Typical privileges include

allowing execution of actions, e.g. SELECT,

INSERT, UPDATE, DELETE, DROP, on certain

objects.

Web applications open database connections using

the specific account for accessing the database. An

attacker who bypasses authentication gains privileges

equal to the accounts. The number of available attack

methods and affected objects increases when more

privileges are given to the account. the worst case

happen If an account can connect to system that is

associated with the system administrator because

normally has all privileges.

Uncontrolled Variable Size: If variables allow

storage of data be larger than expected consequently

allow attackers to enter modified or faked SQL

statements. Scripts that do not control variable length

may even open the way for attacks, such as buffer

overflow.

Error message: Error messages that are generated by

the back-end database or other server-side programs

may be returned to the client-side and presented in

the web browser. These messages are not only useful

during development for debugging purposes but also

increase the risks to the application. Attackers can

analyze these messages to gather information about

database or script structure in order to construct their

attack.

Variable Orphism: The variable should not accept

any data type because attacker can exploit this feature

and store malicious data inside that variable rather

than is suppose to be. Such variables are either of

weak type, e.g. variables in PHP, or are automatically

converted from one type to another by the remote

database.

Dynamic SQL: SQL queries dynamically built by

scripts or programs into a query string. Typically, one

or more scripts and programs contribute and finally

by combining user input such as name and password,

make the WHERE clauses of the query statement.

The problem is that query building components can

also receive SQL keywords and control characters. It

means attacker can make a completely different

query than what was intended.

Client-side only control: If input validation is

implemented in client-side scripts only, then security

functions of those scripts can be overridden using

cross-site scripting. Therefore, attackers can bypass

input validation and send invalidated input to the

server-side.

Into Out file support: Some of RDBMS benefit from

the INTO OUTFILE clause. In this condition an

attacker can manipulate SQL queries then they

produce a text file containing query results. If

attackers can later gain access to this file, they can

abuse the same information, for example, bypass

authentication.

Multiple statements: If the database supports UNION

so, attacker has more chance because there are more

attack methods for SQL injection. For instance, an

additional INSERT statement could be added after a

SELECT statement, causing two different queries to

be executed. If this is performed in a login form, the

attacker may add him or herself to the table of users.

Sub-selects: Supporting sub-selects is weakness for

RDBMS when SQL injection is considered. For

example, additional SELECT clauses can be inserted

in WHERE clauses of the original SELECT clause.

This weakness makes the web application more

vulnerable, so they may be penetrated by malicious

users easily.

2. SQL INJECTION ATTACKS

There are different methods of attacks that depending

on the goal of attacker are performed together or

sequentially. For a successful SQLIA the attacker

should append a syntactically correct command to the

original SQL query. Now the following classification

of SQLIAs will be presented.

© January 2018 | IJIRT | Volume 4 Issue 8 | ISSN: 2349-6002

IJIRT 145219 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 54

Figure 1. SQL Injection Attacks

Tautologies: This type of attack injects SQL tokens

to the conditional query statement to be evaluated

always true. This type of attack used to bypass

authentication control and access to data by

exploiting vulnerable input field which use WHERE

clause. "SELECT * FROM employee WHERE userid

= '112' and password ='aaa' OR '1'='1'" As the

tautology statement (1=1) has been added to the

query statement so it is always true.

Illegal /Logically Incorrect Queries: when a query is

rejected , an error message is returned from the

database including useful debugging information.

This error messages help attacker to find vulnerable

parameters in the application and consequently

database of the application. In fact attacker injects

junk input or SQL tokens in query to produce syntax

error, type mismatches, or logical errors by purpose.

In this example attacker makes a type mismatch error

by injecting the following text into the pin input field:

1) OriginalURL:

http://www.arch.polimi.it/eventi/?id_nav=8864

2) SQL Injection:

http://www.arch.polimi.it/eventi/?id_nav=8864'

3) Error message showed: SELECT name FROM

Employee WHERE id =8864\'

From the message error we can find out name of

table and fields: name; Employee; id. By the gained

information attacker can organize more strict attacks.

Union Query: By this technique, attackers join

injected query to the safe query by the word UNION

and then can get data about other tables from the

application. Suppose for our examples that the query

executed from the server is the following: SELECT

Name, Phone FROM Users WHERE Id=$id by

injecting the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1

FROM CreditCarTable

We will have the following query:

SELECT Name, Phone FROM Users WHERE Id=1

UNION ALL SELECT creditCardNumber,1

FROM CreditCarTable which will join the result of

the original query with all the credit card users.

Piggy-backed Queries: In this type of attack,

intruders exploit database by the query delimiter,

such as ";", to append extra query to the original

query. With a successful attack database receives and

execute a multiple distinct queries. Normally the first

query is legitimate query, whereas following queries

could be illegitimate. So attacker can inject any SQL

command to the database. In the following example,

attacker inject " 0; drop table user " into the pin input

field instead of logical value. Then the application

would produce the query: SELECT info FROM users

WHERE login='doe' AND pin=0; drop table users

Because of ";" character, database accepts both

queries and executes them. The second query is

illegitimate and can drop users table from the

database. It is noticeable that some databases do not

need special separation character in multiple distinct

queries, so for detecting this type of attack, scanning

for a special character is not impressive solution.

3. LITERATURE SURVEY

Ke Weiet al. [1] proposed a novel system to guard

against the attacks focused at stored procedures. This

strategy joins static application code investigation

with runtime approval to kill the event of such

attacks. In the static section, a put away technique

parser is planned, and for any SQL proclamation

which relies on upon client inputs, this parser is

utilized to instrument the fundamental articulations

keeping in mind the end goal to contrast the first SQL

explanation structure with that including client

inputs. The sending of this system can be robotized

and utilized on a need-just premise.

William G.J. Halfondet al. [2] displayed a broad audit

of the diverse sorts of SQL injection attacks known

not. For every sort of assault, portrayals and cases of

how attacks of that sort could be performed are

given. He also presented and broke down existing

discovery and aversion systems against SQL

injection attacks. For every system, its qualities and

shortcomings are talked about in tending to the whole

scope of SQL injection attacks.

© January 2018 | IJIRT | Volume 4 Issue 8 | ISSN: 2349-6002

IJIRT 145219 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 55

William G.J. Halfondet al. [3] proposed another

exceptionally computerized approach for element

discovery and counteractive action of SQLIAs.

Instinctively, this methodology works by recognizing

"trusted" strings in an application and permitting just

these trusted strings to be utilized to make the

semantically important parts of a SQL inquiry, for

example, watchwords or administrators. The general

component that we use to actualize this methodology

depends on element polluting, which checks and

tracks certain information in a project at runtime.

SruthiBandhakaviet al. [4] proposed a

straightforward and novel component, called Candid,

for mining developer expected inquiries by

powerfully assessing keeps running over benevolent

competitor inputs. This component is hypothetically

very much established and depends on surmising

proposed inquiries by considering the typical inquiry

registered on a system run. This methodology has

been actualized in an apparatus called Candid that

retorts Web applications written in Java to protect

them against SQL injection attacks.

Jin-Cherng Linet al. [5] introduced a propelled

proposition embracing the idea of utilization level

security entryway and more successfully determining

the issue than comparable doors or intermediaries.

This framework comprises of discovery testing,

acceptance capacities and redirection instrument.

Mehdi Kianiet al.[6] portrayed an irregularity based

methodology which uses the character conveyance of

certain segments of HTTP solicitations to recognize

already inconspicuous SQL injection attacks. This

methodology requires no client collaboration, and no

alteration of, or access to, either the backend database

or the source code of the web application itself. Its

commonsense results recommend that the model

proposed in this paper is better than existing models

at distinguishing SQL injection attacks. Specialists

additionally assess the adequacy of the model at

recognizing distinctive sorts of SQL injection attacks.

Yu Chin Chenget al. [7] proposed a sort of novel

Embedded Markov Model (EMM) to recognize

diverse web application attacks, screen the on-line

client conduct and safeguard the vindictive client

immediately. Contrasting with past web application

attacks distinguishing approaches, this EMM

methodology can identify client's refuted data

mistakes as well as discover the nonsensical page

move conduct. By identifying outlandish page move,

we can quickly safeguard the pernicious or senseless

client conduct to maintain a strategic distance from

the further web framework disappointments and

touchy data exposure.

Proposed Work

A new algorithm is presented to protect Web

applications or even the desktop application against

SQL injection Attacks. SQL Injection Attacks are a

class of attacks that many of these systems are highly

vulnerable to, and there is no known foolproof

defense against such attacks. Some predefined

methods and integrated approach of encryption

method with secure hashing can be applied in the

database to avoid attack on login phase. This

combined method will be applied to a system where

user‘s information is kept and the designing of this

system will be done by using .Net Architecture.

 Algorithm Proposed

In our proposed concept we have proposed an

algorithm, which will be used for performing a check

that the query fired by the user is an SQL Injection or

not.

The algorithm contains the following steps:

1. First the Query is provided as input in the form

which we created for the Query Analysis

2. In the First Check the Query is check for the

DROP keyword as , to avoid SQL Injection

which can delete the table structure

3. In the Second check we check for the validity of

the SQL statement, in order to check whether it

is proper SQL statement i.e. begin with

SELECT,INSERT etc..

4. In the third check we will avoid the SQL

Injection for the value '1'='1' , this type of

injection can be given in various ways , so we

implemented this in two sub section , firstly

containing OR statement , where we split the

query on the basis of OR keyword and then

checked the parameters for similarity and if same

then it SQL Injection Attack and second a simple

Query which contains only statements like '1'='1'

is handled after checking presence of = and

checking parameters for equality.

5. Apply the constraints for checking the relational

operators based equality 8>7 ,5<6 etc.

6. Also cover the nested queries based SQL

Injection.

7. Then we have check for the queries with

intension of knowing the tables in the databases.

© January 2018 | IJIRT | Volume 4 Issue 8 | ISSN: 2349-6002

IJIRT 145219 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 56

8. Finally we have checked the queries with have

no results, just fired in order to know the table

structure.

In our proposed algorithm, we work on the feature

analysis of the SQL Attacks. Our algorithm can be

well explained with the help of the following

flowchart.

Figure 2. Proposed Work Flow

Consider the following query statement ,

Figure 3. simulated the process of the query SELECT

* FROM employee WHERE emp_id= 'e0v' OR

'x'='x';

In the table employee we donot have any emp_id

with ‗e00v‘ and the result of the query executed is,

As the result of the SQL injection get detected as ‗X‘

= ‗X‘.

Figure 3. Proposed Implementation

Experiment Results

Pattern# String Pattern Expected Result

Secure Insecure

1 ‗OR‖=‘ Login

failed

Login

Successful

2 0‘ or ‗1‘=‘1 Login

failed

Login

Successful

3 1‘ or ‗1‘=‘1 Login
failed

Login
Successful

4 ‗ OR ‗1‘=‘1‘ Login

failed

Login

Successful

5 1‘ or ‗a‘=‘a Login

failed

Login

Successful

6 ; and 1=1 and 1=2 Login

failed

Login

Successful

7 ― ‘ or 1=1 - -― Login
failed

Login
Successful

8 OR '1'='1'" Login

failed

Login

Successful

9. emp_id= 'x' AND

emp_name IS

NULL

Attack

Identif

ied

Columns

reterived

10. SELECT *

FROM employee;

DROP TABLE

employee

Attack

Identif

ied

Table

Employee

Deleted

11. SELECT

TABLE_NAME

FROM

INFORMATION
_SCHEMA.TAB

LES

Attack

Identif

ied

Table Names

in the

database

Table 1. Experiment Results

The Table 1. Shows the execution of the query types

in both the base and proposed implementation and on

the comparison it is shown that the proposed

implementation is able to identify the various types

of attacks.

© January 2018 | IJIRT | Volume 4 Issue 8 | ISSN: 2349-6002

IJIRT 145219 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 57

Figure 4. SQL Attacks Comparison Graph

4. CONCLUSION

SQL Injection Attacks are the biggest problem for the

entire website whether related to social networking,

e-commerce or any other time of applications. The

unauthorized access required to be stopped.

Implementing the algorithm proposed in the website

interfaces will help the websites to stop the SQL

Injection Attacks to the greater extents.

REFERENCES

[1] Ke Wei, M. Muthuprasanna, SurajKothari .

―Preventing SQL Injection Attacks in Stored

Procedures‖ IEEE (Year 2006)

[2] William G.J. Halfond, Jeremy Viegas, and

Alessandro Orso. ―A Classification of SQL

Injection Attacks and Countermeasures‖IEEE.

(Year 2006)

[3] William G.J. Halfond, Alessandro Ors. ―WASP:

Protecting Web Applications Using Positive

Tainting and Syntax-Aware Evaluation‖ IEEE

Transactions On Software Engineering, Vol. 34,

No. 1. (Year 2008)

[4] SruthiBandhakavi, PrithviBisht. ―CANDID:

Preventing SQL Injection Attacks using

Dynamic Candidate Evaluations‖ CCS‘07,

October 29–November 2 (Year 2008)

[5] Jin-Cherng Lin, Jan-Min Chen. ―The Automatic

Defense Mechanism for Malicious Injection

Attack‖ IEEE Seventh International Conference

on Computer and Information Technology.(Year

2007)

[6] Mehdi Kiani, Andrew Clark and George Mohay.

―Evaluation of Anomaly Based Character

Distribution Models in the Detection of SQL

Injection Attacks‖ IEEE. The Third International

Conference on Availability, Reliability and

Security (Year 2008)

[7] 7). Yu-Chin Cheng. ―Defending On-Line Web

Application Security with User-Behavior

Surveillance‖ IEEE (Year 2008)

[8] HossainShahriar and Mohammad

Zulkernine.‖MUSIC: Mutation-based SQL

Injection Vulnerability Checking‖ IEEE The

Eighth International Conference on Quality

SoftwareYear(2008)

[9] NunoAntunes, Marco Vieira.‖Comparing the

Effectiveness of Penetration Testing and Static

Code Analysis on the Detection of SQL Injection

Vulnerabilities in Web Services‖ IEEE Pacific

Rim International Symposium on Dependable

ComputingYear(2009)

[10] Dwen-Ren Tsai,Allen Y. Chang,Peichi

Liu,Hsuan-Chang Chen.‖Optimum Tuning of

Defense Settings for Common Attacks on the

Web Applications‖ IEEE Year (2009)

[11] Ivano Alessandro Elia. ―Comparing SQL

Injection Detection Tools Using Attack

Injection: An Experimental Study‖ IEEE.21st

International Symposium on Software Reliability

Engineering. (Year 2010)

[12] Xin Wang. ―Hidden Web Crawling for Sql

Injection Detection‖ IEEE (Year 2010)

[13] TIAN Wei , XU Jing, LIAN Kun-Mei, ZHANG

Ying,YANGJu-feng. ―Research on mock attack

testing for SQL injection vulnerability in multi-

defense level web applications‖ IEEE

Year(2010)

[14] Zhang Xin-hua,Wang Zhi-jian.‖A Static

Analysis Tool for Detecting Web Application

Injection Vulnerabilities for ASP Program ‖

IEEE Year(2010)

[15] Lijiu Zhang, Qing Gu, ShushenPeng, Xiang

Chen, Haigang Zhao, Daoxu Chen.‖D-WAV: A

Web Application Vulnerabilities Detection Tool

Using Characteristics of Web Forms‖ IEEE Fifth

International Conference on Software

Engineering AdvancesYear(2010)

0

2

4

6

8

10

12

Attacks

1

11

Base Approach

Proposed Work

