
© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146264 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2028

Different Multipliers & its performance analysis

In VLSI using VHDL

Sonal Prajapati

Assistant Professor, Department of Electrical Engineering, VIER, Kotambi, Gujarat

Abstract- Multiplier modules are common to many DSP

applications. The fastest types of multipliers are parallel

multipliers. Among these, the Array multiplier is the

basic one. However, they suffer from more propagation

delay. Hence, where regularity, high performance and

low power are primary concerns, Booth multipliers tend

to be the primary choice. Booth multipliers allow the

operation on signed operands in 2's-complement which

are derived from array multipliers where each bit in a

partial product line an encoding scheme is used to

determine whether the bit is positive, negative or zero.

The Modified Booth algorithm achieves a major

performance improvement through radix-4 encoding.

In this algorithm each partial product line operates on 2

bits at a time, thereby reducing the total number of the

partial products. This is particularly true for operands

using 16 bits or more.

Index Terms- Array multiplier, parallel multiplier,

propagation delay, VHDL, LUT, DSP block, utilization

and twiddle f-actors.

1. INTRODUCTION

Performance is recognized as a one of the critical

parameter in digital system design field, especially in

Digital signal processing (DSP) applications. Fast

multipliers are essential parts of digital signal

processing systems. The speed of multiply operation

is of great importance in DSP as well as in the

general purpose processors today, especially since the

media processing took off. In the past multiplication

was generally implemented via a sequence of

addition, Subtraction, and shift operations.

Multiplication operation is the series of repeated

additions, number to be added is the multiplicand and

the number of times that it is added is the multiplier,

and the result is the product. Each step of addition

generates a partial product. In most computers, the

operand usually contains the same number of bits.

When the operands are interpreted as integers, the

product is generally twice the length is determined by

the performance of the multiplier because the

multiplier is generally the slowest clement in the

system. In digit, serial multipliers have single digits

consisting of several bits are operated on. These

multipliers have moderate performance in both speed

and area. However, existing digit serial multipliers

have been plagued by complicated switching systems

or irregularities in design. The parallel Multipliers

provide high performance compared to serial

multipliers and avoiding irregularities. In this paper,

evaluating performance of 3 different parallel

multipliers in terms of power, delay and area and find

out which one is providing high performance of

operands in order to preserve the information content.

This repeated addition method that is suggested by

the arithmetic definition is slow that it is almost

always replaced by an algorithm that makes use of

positional representation. It is possible to decompose

multipliers into two parts. The first part is dedicated

to the generation of partial products, and the second

one collects and adds them. The basic multiplication

principle is twofold, evaluation of partial products

and accumulation of the shifted partial products. It is

performed by the successive Addition's of the

columns of the shifted bit of the 'multiplicand'. The

delayed, gated instance of the multiplicand must all

be in the same column of the shifted partial product

matrix.

They are then added to form the product bit for the

particular form .Multiplication is there for multi

operand operation. To extend the multiplication to

both signed and unsigned numbers a convenient.

Number system would be the representation of

numbers in two's complement format. Multiplication

is an important fundamental function in arithmetic

function.

2. MULTIPLIERS

Multipliers play an important role in today’s digital

signal processing and various other applications.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146264 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2029

With advances in technology, many researchers have

tried and are trying to design multipliers which offer

either of the following design targets high speed, low

power consumption, regularity of layout and hence

less area or even combination of them in one

multiplier thus making them suitable for various high

speed, low power and compact VLSI

implementation.

Characteristics of multiplier:

An efficient multiplier should have following

characteristics:

Speed: Multiplier should perform operation at high

speed.

Area: A multiplier should occupy less number of

slices and LUTs.

Power: Multiplier should consume less power.

Multiplication process has three main steps:

1. Partial product generation.

2. Partial product reduction.

3. Final addition.

For the multiplication of an n-bit multiplicand with

an m bit multiplier, m partial products are generated

and product formed is n + m bits long.

Different types of multipliers:

Here we discuss different types of multipliers which

are

1. Binary multiplier

2. Array multiplier

3. Booth multiplier

4. Modified booth multiplier

2.1 Binary multiplier:

A binary multiplier is an electronic hardware device

used in digital electronics or a computer or other

electronic device to perform rapid multiplication of

two numbers in binary representation. It is built using

binary adders. The rules for multiplication can be

stated as

1. If the multiplier digit is 0 the product is also 0.

2. If the multiplier digit is 1 then the multiplicand is

simply copied down and represents the product.

3. It should be capable of shifting left partial

products.

4. It should be able to add all the partial products to

give the products as sum of partial products.

5. It should be examine the sign bits. If they are alike

the sign of the product will be a positive, if the

sign bits are opposite product will b negative.

The sign bit of the product stored with above

criteria should be displayed along with the

product.

If binary multiplier is implemented using full adder

the delay is reduced from C (in) to C (out) because

the carry chain is the critical delay path in adders.

Instead carry save adders are normally implemented

to minimize delay from each input to the outputs.

2.2 Array multiplier:

It is well known due to its regular structure.

Multipliers circuit is based on add and shift

algorithm. Each partial product is generated by the

multiplication of the multiplicand with one multiplier

bit. The partial product are shifted according to their

bit adders and then added.

Fig.1 Architecture of array multiplier boao is

generated by using AND gate For m*n Array

multiplier Number of AND Gates are m*n.

The addition can be performed with normal carry

propagate adder.

N-1adders are required where N is the multiplier

length Numbers of Half Adders are n.

Numbers of Full Adders are n (m-2) Total numbers

of adders are n (m-1)

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146264 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2030

An example of 4-bit multiplication method is shown

below:

Product (a*b)

Fig.2 Example of 4-bit multiplication

Although the method is simple as it can be seen from

this example, the addition is done serially as well as

in parallel. To improve on the delay and area the

CRAs are replaced with Carry Save Adders, in which

every carry and sum signal is passed to the adders of

the next stage. Final product is obtained in a final

adder by any fast adder (usually carry ripple adder).

In array multiplication we need to add, as many

partial products as there are multiplier bits. This

arrangements is shown in the figure below

Fig .3 Array multiplier using carry save adder

Problem in Array Multiplier:

Carry should be travelled up to P7 then only

output generates

Tc—Carry propagation time

Ts---Sum Propagation time of an adder

Ta---And gate time

If Tc>>Ts

Neglect Ts(since Ts is local and Tc is

Global phenomenon)

Total multiplier Time is Ta+6Tc or Ta+[(n-1)+(m-

1)]Tc

If Tc<Ts,

Total multiplication time is Ta+3Tc+3Ts orTa+(n-

1)Ts+(m-1)Tc

2.3 Booth multiplier:

Booth multiplication algorithm gives a procedure

for multiplying binary integers in signed -2’s

complement representation. In booth multiplication

process arithmetic shift and circular shift operations

are performed.

Circular shift:

In combinational mathematics, a circular shift is

the operation of rearranging the entries in a tuple,

either by moving the final entry to the first position,

while shifting all other entries to the next position, or

by performing the inverse operation. A circular

shift is a special kind of cyclic permutation,

which in turn is a special kind of permutation.

The results of repeatedly applying circular shifts to a

given tuple are also called the circular shifts of the

tuple. For example, repeatedly applying circular

shifts to the four- tuple (a, b, c, d) successively gives.

• (d, a, b, c),

• (c, d, a, b),

• (b, c, d, a),

• (a, b, c, d) (the original four-tuple),

and then the sequence repeats ; this four-tuple

therefore has four distinct circular shifts. However,

not all n-tuples have n distinct circular shifts. For

instance, the 4-tuple (a, b, a, b) only has 2 distinct

circular shifts. In general the number of circular shifts

of an n-tuple could be any divisor of n, depending on

the entries of the tuple.

In computer programming a circular shift (or bitwise

rotation) is a shift operator that shifts all bits of its

operand. Unlike an arithmetic shift a circular shift

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146264 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2031

does not preserve a number's sign bit or distinguish a

number's exponent from its mantissa. Unlike a logical

shift, the vacant bit positions are not filled in with

zeros but are filled in with the bits that are shifted out

of the sequence.

If the bit sequence 0001 0111 were subjected to a

circular shift of one bit position

Fig.4 Left circular shift operation

Fig.5 Right circular shift operation

Steps are for implementing the booth algorithm:

Let X and Y are two binary numbers and having m

and n numbers of bits (m and n are equal)

respectively.

Step 1: Making booth table: In booth table we will

take four columns one column for multiplier

second for previous first LSB of multiplier and other

two (U and V) for partial product accumulator.

1. From two numbers, choose multiplier (X) and

multiplicand (Y).

2. Take 2’s complement of multiplicand (Y).

3. Load Xi value in the table.

4. Load 0 for Xi-1 value.

5. Load 0 in U and V which will have product of X &

Y at the end of the operation.

6. Make n rows for each cycle because we are

multiplying m and n bits numbers.

Booth algorithm: Booth algorithm requires

examination of the multiplier bits, and shifting of the

partial product (P). Prior to the shifting, the

multiplicand added to P, subtracted from the P, or

left unchanged according to the following recoding

rules:

Table3.2 Booth recoding table

2. Take U & V together and shift arithmetic

right shift which preserves the sign bit of 2’s

complement number. So, positive numbers and

negative numbers remains positive and negative

respectively.

3. Circularly right shift X because this will

prevent us from using two registers for the X value.

Repeat the same steps until n no. of cycles are

completed. In the end we get the product of X and Y.

Let us consider an example for Booth multiplication

The original version of the Booth algorithm (Radix-

2) had two drawbacks. They are:

(i) The number of add subtract operations and the

number of shift operations becomes variable and

become inconvenient in designing parallel

multipliers.

(ii) The algorithm becomes inefficient when there

are isolated 1’s. These problems are overcome by

using modified Radix 4.

2.4 Modified booth multiplier:

It is a powerful algorithm for signed-number

multiplication, which treats both positive and

negative numbers uniformly. For the standard add-

shift operation, each multiplier bit generates one

multiple of the multiplicand to be added to the

partial product. If the multiplier is very large, then a

large number of multiplicands have to be added. In

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146264 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2032

this case the delay of multiplier is determined

mainly by the number of additions to be

performed. If there is a way to reduce the number of

the additions, the performance will get better.

Fig.7 Block Diagram of Modified Booth Algorithm

Table 3.3 below is used to convert a binary number to

radix-4 number. Initially, a ―0‖ is placed to the

right most bit of the multiplier. Then 3 bits of

the multiplicand is recoded according to table

below or according to the following equation:

Zi = -2xi+1 + xi + xi-1

Example:

Multiplier is equal to 0 1 0 1 1 10 then a 0 is placed

to the right most bit which gives 0 1 0 1 1 10 0 the 3

digits are selected at a time with overlapping left

most bit as follows

Table3.3 Binary to Radix-4 conversion table

For example, an unsigned number can be converted

into a signed-digit number radix 4:

(10 01 11 01 10 10 11 10)2 = (–2 2 –1 2 –1 –1 0 –

2)4

Here –2*multiplicand is actually the 2s complement

of the multiplicand with an equivalent left shift of

one bit position. Also, +2 *multiplicandis the

multiplicand shifted left one bit position which is

equivalent to multiplying by 2.

To enter 2*multiplicand into the adder, an (n+1)-bit

adder is required. In this case, the multiplicand is

offset one bit to the left to enter into the adder while

for the low-order multiplicand position a 0 is added.

Each time the partial product is shifted two bit

positions to the right and the sign is extended to the

left.

During each add-shift cycle, different versions of the

multiplicand are added to the new partial product

depends on the equation derived from the bit-pair

recoding table above.

3. FINAL RESULT

For comparison we have implemented different

multipliers in terms of delay (ns), area and power.

These Multipliers were modelled in VHDL and

synthesized by using Xilinx design suite14.4

PERFORMANCE COMPARISON OF ARRAY,

BOOTH AND MODIFIED BOOTH MULTIPLIERS

 Array Booth

Modifie

d

 Booth

DELAY(ns) 23.856 30.798 7.818

POWER(mw) 0.081 0.014 0.014

BELLS(AREA) 123 458 22

I/O BUFFERS 32 33 27

 (16+16) (17+16) (11+16)

The above table shows the performance comparison

of different multipliers. In array Multiplier more area

and high Power consumption. In comparison use of

booth multiplier Occupies more area, low power

consumption and speed is almost same as array

multiplier.The Modified Booth Multiplier is Best

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146264 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2033

from the above multipliers because of area occupied

is Less and more fastest multiplier in comparison to

array and booth multipliers .it is consuming low

power also.

4. CONCLUSION

We analyzed the area occupied, power consumed and

the time delay consumed by different multipliers and

found out best among them. After comparing all we

came to a conclusion that Modified booth multiplier

is best suited for high speed and low power

applications.

5. FUTURE WORK

There are several future research directions are

possible for further reduction of power and time

delay consumption. One of the possible directions is

radix higher-than-4 recoding. We have only

considered radix-4 recoding as it is a simple and

popular choice. Higher-radix recoding further

reduces the number of PPs and thus has the potential

of power saving.

REFERENCES

[1] S. Shafiulla Basha, Syed. Jahangir Badashah.

‛Design and implementation of Radix-4 based

high speed multiplier for ALU’s using minimal

partial product‛ International Journal of

Advances in Engineering & Technology, July

2012 ISSN: 2231-1963.

[2] Dhanya Geethanjali Sasidharan, AarathyIyer

‚Comparison of Multipliers Based on Modified

Booth Algorithm‛ International Journal of

Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 1,

January February 2013, pp.1513-1516

[3] S. Jagadeesh, S. Venkata Chary‚ Design of

Parallel Multiplier– Accumulator Based on

Radix-4 Modified Booth Algorithm with SPST‛

International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, issue 5, September-

October 2012, pp.425-431

[4] A. R. Cooper, ―Parallel architecture modified

Booth multiplier,‖Proc. Inst. Electr. Eng. G, vol.

135, pp. 125–128, 1988 M. Young, The

Technical Writer's Handbook. Mill Valley, CA:

University Science, 1989.

[5] Marc Hunger and Daniel Marienfeld, ‚New self-

checking booth multiplier‛, Int. J. Appl. Math,

Comput. Sci., Vol.18, No.3, 319– 328,2008.

[6] S. Waser and M. J. Flynn, Introduction to

Arithmetic for Digital Systems Designers. New

York: Holt, Rinehart and Winston, 1982.

[7] A. R. Omondi, Computer Arithmetic Systems.

Englewood Cliffs, NJ:Prentice-Hall, 1994.

[8] Prof. Vojin G. Oklobdzija ‚High-Speed VLSI

Arithmetic Units: Adders and Multipliers‛

September 13, 1999

[9] Kai Hwang ―Computer Arithmetic: Principles,

Architecture, and Design‖ John Wiley & Sons

1979

[10] S. D. Pezaris "A 40-ns 17-Bit by 17-Bit Array

Multiplier", IEEE Trans. on Computers, pp. 442-

447,.Abr. 1971

[11] Priyastalin, anuradha, k ranjithkumar, n

vaishnav, d vigneswara, s t santhosh ―high

speed multiplier with pipelining‖

InternationalJournal of VLSI and Embedded

Systems-IJVES .

[12] NavdeepKaur, Rajeev Kumar Patial

―Implementation of Modified Booth Multiplier

using Pipeline Technique on FPGA‖

International Journal of Computer Applications

(0975 – 8887).

[13] K. Srishylam, Prof. Syed Amjad Ali,

M.Praveena ―Implementation of Hybrid CSA,

Modified Booth Algorithm and Transient power

Minimization techniques in DSP/Multimedia

Applications‖International Journal of

Engineering Research and Applications (IJERA)

[14] Shanthala S, S. Y. Kulkarni ―VLSI Design and

Implementation of Low Power MAC Unit with

Block Enabling Technique‖ European Journal of

Scientific Research

[15] Iffat Fatima ―Analysis of Multipliers in VLSI‖

Journal of Global Research in Computer Science.

