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Abstract - The next generation of transportation, 

location, models will most probably emerge from 

mathematical programming formulations. Presented are 

simple numerical examples of trip assignment and 

population location, both described as optimization 

problems, in mathematical programming formulations. 

A trip assignment model with constant link costs less 

described first, and then the same model is modified to 

show the consequences of a How-dependent link cost 

formulation. In similar fashion, a linear model of least 

cost population location is transformed into a nonlinear 

model that incorporates dispersion of location due to 

differences in locators' preferences or perceptions. It less 

then showed how the trip assignment model and the 

location model can be combined into a single nonlinear 

programming formulation that solves both problems 

simultaneously. 

 

Index Terms - Transportation problem, Bottleneck 

Transportation Problem, Mathematical Programming 

 

INTRODUCTION 

 

Mathematical programming is one of the most 

important techniques avail-able for quantitative 

decision making. The general purpose of mathematical 

programming is finding an optimal solution for 

allocation of limited re-sources to perform competing 

activities. The optimality is defined with respect to 

important performance evaluation criteria, such as 

cost, time, and profit. Mathematical programming uses 

a compact mathematical model for describing the 

problem of concern. The solution is searched among 

all feasible alternatives. The search is executed in an 

intelligent manner, allowing the evaluation of 

problems with a large number of feasible solutions. 

Mathematical programming finds many applications 

in supply chain management, at all decision-making 

levels. It is also widely used for supply chain 

configuration purposes. Out of several classes of 

mathematical programming models, mixed-integer 

programming models are used most frequently. Other 

types of models, such as stochastic and multi-objective 

programming models, are also emerging to handle 

more complex supply chain configuration problems. 

Although these models are often more appropriate, 

computational complexity remains an important issue 

in the application of mathematical programming 

models for supply chain configuration. 

There has been considerable refinement of practical 

methods of forecasting urban location and 

transportation patterns during the past 10 to 15 years. 

Although there is continuing discussion and 

development, and even the best of forecasts are far 

from perfect, there appears to be a greater consensus 

on what methods are clearly outmoded and in what 

directions future efforts should move. Among the most 

sophisticated practical methods of transportation are 

the extended spatial interaction models, especially 

when they are included in comprehensive integrated 

model systems. 

In addition to these practical developments there have 

also been important theoretical developments. On the 

transportation side these include the development of 

discrete choice models, especially for travel demand 

and mode choice (Ben-Akiva and Lerman, 1985), and 

the development of mathematical programming 

formulations of the traffic assignment problem (Sheffi, 

1985). On the location side the development of utility 

theory as a basis for location models (Anas, 1982) and 

the general discussion of mathematical programming 

models as alternate or underlying structures for spatial 

interaction models (Wilson et al., 1981) were major 

developments. Some of these developments are 

important principally because they provide an 

improved underpinning of existing practical methods; 

some have shown the existence of clear errors in prior 

practice; and others may offer substantial 

improvements for future applications.  
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Past experience suggests that there is a lag of 10 years, 

sometimes more, between the initial development and 

subsequent practical application of new techniques in 

transportation and land use forecasting. Thus, 

although there have been some attempted applications 

of these methods (Prastacos, 1985), they are far from 

being the accepted norm. The purpose of this paper is 

to present some illustrations of the mathematical 

programming formulations along with some simple 

numerical examples. The intent is to show some of the 

benefits, both practical and theoretical, of these 

formulations and to provide the practical planner with 

an introduction to this promising new area. 

Mathematical programming models are used to 

optimize decisions concerning execution of certain 

activities subject to resource constraints. 

Mathematical programming models have a well-

defined structure. They consist of mathematical 

expressions representing objective function and 

constraints. The expressions involve parameters and 

decision variables. The parameters are input data, 

while the decision variables represent the optimization 

outcome. The objective function represents modeling 

objectives and makes some decisions more preferable 

than others. The constraints limit the values that 

decision variables can assume. 

The main advantages of mathematical programming 

models are that they provide a relatively simple and 

compact approximation of complex decision-making 

problems, an ability to efficiently find an optimal set 

of decisions among a large number of alternatives, and 

supporting analysis of decisions made. Specifically, in 

the supply chain configuration problem context, 

mathematical programming models are excellent for 

modeling its special aspects. There are also some 

important limitations. Mathematical programming 

models have a lower level of validity compared to 

some other types of models — particularly, simulation. 

In the supply chain configuration context, 

mathematical programming models have difficulties 

representing the dynamic and stochastic aspects of the 

problem. Additionally, solving of many supply chain 

configuration problems is computationally 

challenging.  

Mathematical programming uses a compact 

mathematical model for describing the problem of 

concern. The solution is searched among all feasible 

alternatives. The search is executed in an intelligent 

manner, allowing the evaluation of problems with a 

large number of feasible solutions. 
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Transportation model 

The transportation problem is one of the subclasses of 

linear programming problem where the objective is to 

transport various quantities of a single homogeneous 

product that are initially stored at various origins, to 

different destinations in such a way that the total 

transportation is minimum. 

 

Purpose of Transportation models 

Transportation models or problems are primarily 

concerned with the optimal (best possible) way in 

which a product produced at different factories or 

plants (called supply origins) can be transported to a 

number of warehouses (called demand destinations). 

The objective in a transportation problem is to fully 

satisfy the destination requirements within the 

operating production capacity constraints at the 

minimum possible cost. 

 

Transportation Problem: Characteristics 

A transportation problem aims to find the best way to 

fulfill the demand of n demand points using the 

capacities of m supply points. A product is transported 

from a number of sources to a number of destinations 

at the minimum possible cost. Each source is able to 

supply a fixed number of units of the product, and each 

destination has a fixed demand for the product. The 

linear programming model has constraints for supply 

at each source and demand at each destination. In a 

balanced transportation model supply equals demand. 

 

Types of Transportation Problem 

Balanced Transportation Problem Unbalanced 

Transportation Problem Less Supply as Compared to 

Demand Less Demand as Compared to Supply 

Transportation Model Example Linear Programming 

Model Formulation 

xij = tons of wheat from each grain elevator, i, i = 1, 2, 

3, to each mill j = A,B,C Minimize Z = $6x1A + 8x1B 

+ 10x1C + 7x2A + 11x2B + 11x2C x3A + 5x3B + 

12x3C subject to: x1A + x1B + x1C = 150 x2A + x2B 

+ x2C = 175 x3A + x3B + x3C = 275 x1A + x2A + 

x3A = 200 x1B + x2B + x3B = 100 x1C + x2C + x3C 

= 300  0xij 
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Summary of the Transportation Simplex Method 

The transportation simplex method uses linear 

programming to solve transportation problems. The 

goal is to create the optimal solution when there are 

multiple suppliers and multiple destinations. The data 

required includes the unit shipping costs, how much 

each supplier can produce, and how much each 

destination needs. 

The minimum-cost flow problem (MCFP) is an 

optimization and decision problem to find the cheapest 

possible way of sending a certain amount of flow 

through a flow network. A typical application of this 

problem involves finding the best delivery route from 

a factory to a warehouse where the road network has 

some capacity and cost associated. The minimum cost 

flow problem is one of the most fundamental among 

all flow and circulation problems because most other 

such problems can be cast as a minimum cost flow 

problem and also that it can be solved efficiently using 

the network simplex algorithm. 

 

Minimum Cost Flow: Key Concepts 

    

How do you solve minimum cost problems? 

Minimum weight bipartite matching 

The idea is to reduce this problem to a network flow 

problem. Let G′ = (V′ = A ∪ B, E′ = E). Assign the 

capacity of all the edges in E′ to 1. Add a source vertex 

s and connect it to all the vertices in A′ and add a sink 

vertex t and connect all vertices inside group B′ to this 

vertex. 

 

Which algorithm is used to solve a minimum flow 

problem? 

Cycle Cancelling Algorithm: 
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This algorithm is used to find min cost flow along the 

flow network. Pseudo code for this algorithm is 

provided below. Negative cycle in cost network is 

cycle with sum of costs of all the edges in the cycle is 

negative. 

 

How do you solve maximum flow problem? 

It is defined as the maximum amount of flow that the 

network would allow to flow from source to sink. 

Multiple algorithms exist in solving the maximum 

flow problem. Two major algorithms to solve these 

kinds of problems are Ford-Fulkerson algorithm and 

Dinic's Algorithm. 

 

Integer Optimization and the Network Models 

Network models and integer programs are applicable 

for an enormous known variety of decision problems. 

Some of these decision problems are really physical 

problems, such as transportation or flow of 

commodities. Many network problems are more of 

abstract representations of processes or activities, such 

as the critical path activity network in project 

management. These problems are easily illustrated by 

using a network of arcs, and nodes. Standard linear 

program assumes that decision variables are 

continuous. However, in many applications, fractional 

values may be of little use as shown in some presented 

useful applications. 
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CONCLUSIONS 

 

Numerous model tests using the kinds of models 

described here indicate that linear mathematical 

programming models of location are inherently 

idealistic. The least-cost zone will get all possible 

locators even if the next-to least-cost zone is only 

marginally more expensive. The objective function 

component weighting problem implies that an 

arbitrary difference in units of measurement can result 

in one component of a model solution’s being 

dominant over another. 

Perhaps the most important is that developing these 

model formulations and then testing their behavior 

gives wonderful insight into various hypotheses. The 

effects, and general importance, of constraints in such 

formulations became clearly evident in these 

experiments. At the same time the experiments clearly 

illustrated the need for inclusion of dispersion terms in 

such models. The inference is that although in 

principle, an optimizing process, in actuality there are 

obviously other factors that result in a dispersion of a 

simple “least-cost” optimum. Yet the optimizing 

process provides a model-building rationale that can 
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be particularly helpful in understanding the 

implications of model structure and can thus, in turn, 

be expected to improve modeling practice as well. 
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