
© October 2018| IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002 

IJIRT 153071 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 237 

 

MHD Visco-Elastic Fluid Flow and Heat Transfer with 

Variable Thermal Conductivity Embedded in a Porous 

Medium 

 

 

Dr.SAYED ANIS FATIMA.H 

PG-Department of Mathematics, Govt. Autonomous College Kalaburgi 

 

Abstract - Magneto hydrodynamic flows, heat and mass 

transfer due to combined effect of porosity and visco-

elasticity with variable thermal conductivity over a non-

isothermal stretching sheet have been investigated 

numerically and analytically. The effect of various 

physical parameters like visco-elastic parameter, heat 

source/sink parameter, thermal conductivity is analyzed 

on temperature (both PST and PHF CASE) profiles 

respectively.  

Index Terms - Magneto hydrodynamic flow, Thermal 

conductivity, visco-elasticity, porosity. 

 

INTRODUCTION 

 

The study of boundary layer flow over a stretching 

sheet play an important role in many engineering 

processes, such as aerodynamic extrusion of plastic 

sheets has many practical applications in industrial 

manufacturing processes, such as extrusion of polymer 

sheet, cooling of metallic sheet in cooling bath, 

manufacturing of plastic films, artificial fibres, and 

paper production etc. The study of momentum and 

heat transfer is found to be necessary for determining 

the quality of final products of such processes which 

is explained in detail by Karwe and Jaluria and 

Sakiadis [1961a, 1961b] was the first amongst the 

others to study such problems by considering the 

boundary layer viscous fluid flow over a continuous 

solid surface moving with constant velocity. It was 

then extended to that of stretching of a boundary sheet 

with linear velocity by Crane [1970]. This work has 

subsequently attracted several researchers; 

Erickson.et.al [1966] extended this problem to the case 

in which the transverse velocity at the moving surface 

is non-zero. Tsou-et.al [1967], who investigated heat 

transfer effect of moving sheet with constant surface 

velocity and temperature. So many other researchers 

carried out extensive analysis of heat and mass transfer 

phenomena associated with such flow, but their 

investigations are restricted only to the flow of 

Newtonian fluid. However, in reality most of the 

liquids used in industrial applications particularly in 

polymer processing applications are of non-

Newtonian in nature. The non-Newtonian fluids are 

being considered more important and appropriate in 

technological applications in comparison with 

Newtonian fluids. A large class of real fluids does not 

exhibit the linear relationship between stress and rate 

of strain. Because of non-linear dependence, the 

analysis and behavior of non- Newtonian fluids tends 

to be more complicated in comparison to Newtonian 

fluids.  

In view of the importance of these applications, 

Rajagopal et.al [1984], have studied the flow behavior 

of visco-elastic fluid over a stretching sheet and gave 

an approximate solution for the flow. It is more 

appropriate to consider the non-Newtonian behavior 

of these fluids in the analysis of the boundary layer 

flow and heat transfer characteristics, because in 

industrial applications most of the fluids such as 

plastic films and artificial fibers are not strictly 

Newtonian. Considering the survey of literature in 

non-Newtonian fluid flow, Siddappa and Abel [1985] 

have presented a similar flow analysis without heat 

transfer in the flow of non-Newtonian fluids of the 

type Walter's liquid B [1994]. Abel and Veena (1998) 

studied the visco-elastic fluid flow and heat transfer in 

a porous medium over a stretching sheet. Gupta and 

Sridar [1985] analyzed the effect of visco-elastic 

parameter on non-Newtonian flow through porous 

medium. Many researchers such as Dandapat and 

Gupta [1989], Anderson [1992,1995], Chakrabarthi 

and Gupta [1979], Sarpakaya.T [1961] have done their 

work on MHD visco-elastic fluid Flows. In above all 
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studies the physical properties of the fluid are assumed 

to be constant, but for liquid metals, it has been found 

that the thermal conductivity k varies with temperature 

in an approximately linear manner, which is also true 

in some polymer solutions in the class of Walter’s 

liquid B [1994], and that leads to non-linearity in the 

boundary value problem of heat transfer. Chiam 

[1996,1998] has done his work by taking the thermal 

conductivity as a function of temperature. Prasad et.al 

[2000] analyzed the effect of momentum and heat 

transfer of visco elastic fluid flow over a non-

isothermal stretching sheet assuming the thermal 

conductivity varying linearly with temperature. 

Motivated by all these investigations, we contemplate 

to study the MHD visco-elastic fluid flow over a 

stretching sheet in presence of variable thermal 

conductivity. Heat  transfer characteristic is also 

analyzed. Because of the complexity and non-linearity 

in the proposed problem, it has been solved 

numerically by shooting technique with fourth order 

Runge-kutta integration scheme. 

 

Mathematical Formulation: 

Consider a steady state two-dimensional 

incompressible visco-elastic laminar flow of a 

Walter's liquid B in porous media over a  

semi infinite stretching sheet coinciding with the plane 

y=0. The flow is generated due to stretching of the 

sheet, caused by the simultaneous application of two 

equal and opposite forces along x-axis. Keeping the 

origin fixed, the sheet is then stretched with a speed 

varying linearly with the distance from the origin 

x=0.This flow obeys the modified version 

(Prasad.et.al [2000]) of the rheological equation of 

state derived by Beard and Walter's [1964]. The flow 

field is then exposed under the influence of uniform 

transverse magnetic field in such way that the effect of 

the induced magnetic field is negligible (Anderson 

[1992]). Hence the basic boundary layer equation 

governing the flow, heat and mass transfer in presence 

of internal heat generation takes the form  

                                       (1) 

 (2) 

   (3) 

Here, σ is the electrical conductivity, B0 is the applied 

magnetic field, k0 is the visco-elastic parameter of the 

Walter’s liquid B. k' permeability of porous medium, 

Q is the volumetric rate of heat generation, k is the 

thermal conductivity. The other quantities have their 

usual meanings. 

The boundary conditions governing the flow are  

u= bx           

v = 0           

 =  =  + A1 x         (PST case)  

T
k Bx

y


− =


    (PHF case) 

 

Here u and v are velocity components along x and y 

directions respectively. A1, B and A2 are arbitrary 

constants, which depend on the nature of the boundary 

surface.
,wT T  are temperature of the stretching sheet 

and temperature of the flow region far away from the 

sheet respectively.  

 

Flow Analysis: 

In order to obtain the mathematical form of the 

velocity, we introduce the following similarity 

transformations 

),(fbxu =
 

)( fbv −=
   

Where

y
b

.


 =
                                           (6)   

With these changes of variables, equation (1) is 

identically satisfied and equation (2) is transformed 

into the following non-linear ordinary differential 

equation. 

2−=−k−−−n−k   (7)  

Where                          
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are non-dimensional visco-elastic, Magnetic and 

porosity  parameters respectively and the boundary 

condition takes the form     

0=f
  

1=f
         at    =0 

f’→0   
0→f

 as    →                   (8) 

Where prime denotes differentiation w.r.t .  

0=
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
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             u→ 0        
u
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


→ 0                                                       

          T→T    as   y→                           (5) 
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The exact solution of equation (7) corresponding to the 

boundary conditions (8) is obtained as 

)1(
1 



−−= ef
 

Where 

 =

2

1

1

1

Mn k

k

+ +

−
                                       (9) 

The solutions for velocity field is obtained as

1
,

e
u bxe v b


 



−
− −

= = −
          (10) 

It is of some interest to note that our result (10) gives 

the result of Anderson [1995] in the limiting case of 

k=0. 

 

Heat Transfer Analysis:  

The energy equation in presence of variable thermal 

conductivity with internal heat generation /absorption 

for the two dimensional flow is 

( ) ( ) ( )p

T T T
c u v k Q T T

x y y y
 

   
+ = + −

   
(11) 

Where  is the density, cp is the specific heat at 

constant pressure, k is the thermal conductivity, 

which is assumed to be variable with temperature and 

is given by 

)1( += kk
, 

Where 



−

−
=

TT

TT

w



        (PST CASE) 

k = k (1+  g), 

Where 

( ) ,




−

−
=

TT

TT
g

w



 (PHFCASE)           (12) 

Where 

−
=

k

kkw

 is very small parameter which 

depends on the nature of the fluid and k  is the 

conductivity of the fluid far away from the sheet and 

Q is volumetric rate of heat generation. Thermal 

boundary conditions depend upon the type of the 

heating process. Here we considered two different 

type of heating processes namely 

(1) Prescribed surface temperature  

(2) Prescribed power law heat flux 

CASE (1): PRESCRIBED SURFACE 

TEMPERATURE 

In this case we consider the boundary conditions as 

 =  =  + A x         at  y = 0. 

T→T             as   y →                            (13) 

wT
 is variable wall temperature,  is a constant and  

is wall temperature parameter. When   =0 the thermal 

boundary condition becomes isothermal. Using (9), 

(10) , (12), equation (11) and corresponding boundary 

condition (13) takes the form  

(1+  )   +Pr f−Pr ( f-β)  +  ( )  =0          (14) 

With boundary conditions                                        

() = 1     at        = 0 

 →         as       →               (15) 

 

Where prime denotes differentiation w.r.t    and  Pr =

pc

k



, p

Q

c b



=

                                   

 

CASE2:  PRESCRIBED POWER LAW HEAT FLUX   

For this heating process, the boundary conditions are  

T
k Bx

y


− =


    at       y  = 0  

T→T           as         y →             (16) 

 

Where  is the wall heat flux parameter, B is constant.  

Defining                      

( ) ,




−

−
=

TT

TT
g

w



 

Where 
w

Bx b
T T

k




−  =

                      (17)           and 

k = k ( 1 +  g),                         

With this change of variable equation (11) and 

corresponding boundary conditions (17) takes the 

form  

(1+  g ) g+  (g’)2+ Pr f g– Pr(  f-β) g = 0          (18) 

And  the boundary conditions are   

g' ( ) = - 1      at     = 0 

g ( ) →  0      as    →             (19) 

The important physical quantities of our interest is the 

wall temperature wT
 which is defined as  
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(0)w

Bx b
T T g

k




= +

              (20)      

  In the next section we solve equations (14) and (18) 

subject to the boundary conditions (15) and  (19) 

respectively.           

 

METHOD OF  SOLUTIONS 

 

Since equation (14) and (18) are non-linear ordinary 

differential equations and exact solution do not seems 

to be feasible, therefore we solve equation  (14) and 

18) numerically by using most efficient numerical 

shooting technique with fourth order Runge kutta 

algorithm to solve them.  

 

RESULTS AND DISCUSSION 

 

The heat transfer phenomena are usually analyzed 

from the numerical values of the two physical 

parameters namely:  

(i) wall temperature gradient and wall concentration 

gradient in PST case, and  

(ii) wall temperature and wall concentration in PHF 

case. Numerical results for both the cases is recorded 

in Table-I, II and III.    

 In order to have a clear insight of the physical 

problem, numerical results are displayed with the help 

of graphical illustrations. 

*   Table-I shows a comparison of the present results 

for visco-elastic fluid in presence of variable thermal 

conductivity for the temperature gradient -(0) with 

T.C.Chiam [1970], our results are qualitatively good 

in agreement with T.C.Chiam, but quantitively less in 

magnitude.  

* Table-II shows the values of temperature gradient -

(0) (PSTcase) and temperature at the wall g(0) 

(PHFcase). 

*Table-III shows the value of wall concentration 

gradient (0) for different values of Sc and  k1 .  

* Results for prescribed surface temperature (PST) are 

drawn in Fig.1-3 and for prescribed power law heat 

flux (PHF) are drawn in Fig.4-6 .  

Fig-1 shows the variation of temperature profile 

against the space variable  for different values of 

visco-elastic parameter k1, it can be seen from Fig-1 

that temperature profile increases when k1 increase. 

This is due to the fact that the thickening of thermal 

boundary layer occurs due to the increase of Visco-

elastic normal stress.  

The effect of heat source/sink parameter () on 

temperature profile () in the boundary layer is 

shown in Fig-2. It is observed that the effect of heat 

source ( > 0) in the boundary layer generates the 

energy, which causes the temperature to increase, 

while the presence of heat sink ( < 0) in the boundary 

layer absorbs the energy, which causes the 

temperature to decrease. These behaviors are even true 

in the absence of porosity, which is represented in Fig-

2. 

Fig-3 shows the effect of thermal conductivity () on 

temperature profile () in the boundary layer, it is 

observed that temperature profile () increases as 

thermal conductivity parameter () increase, because 

there is more heat flow through the stretching surface. 

It is also true in absence of porosity. This result is 

qualitatively good in agreement with Chiam [1970]. 

 The graphs for the situation when the boundary has 

been prescribed with heat flux (PHF) are shown in 

Fig.4-6. It is noticed from these figures that the wall 

temperature is not unity, it is changed at the wall with 

the change of physical parameters like Visco-elastic 

parameter (k1), heat source/sink () and thermal 

conductivity () and have same qualitative effects as 

those we found in PST case but quantitatively wall 

temperature is more in PHF case.                        

 

SUMMARY AND CONCLUSION 

 

Magneto hydrodynamic flows, heat and mass transfer 

due to combined effect of porosity and visco-elasticity 

with variable thermal conductivity over a non-

isothermal stretching sheet have been investigated 

numerically and analytically. The effect of various 

physical parameters like visco-elastic parameter, heat 

source/sink parameter, thermal conductivity 

parameter  is analyzed on temperature. 

The specific conclusions derived from our study are 

summarized as follows 

1. The increase of thermal conductivity  leads to 

decease the temperature gradient  - (0) in PST 

Case and to increase the wall temperature g (0) in 

PHF Case. This observation is even true in 

presence of porosity parameter but with reduced  

magnitude. 
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2. The effect of visco-elastic parameter is to increase 

the temperature profile in both PST and PHF 

cases. 

3. The effect of heat source/sink parameter () and 

visco-elastic parameter k1 is seen to increase the 

temperature distribution in the flow region.  

4. Temperature profile () in (PST case) and g() 

(PHF case) are quantitatively more in porous 

media 

 

TABLE I: Comparison of the values of - (0) for 

different Values of  in presence of variable   

Table-II wall temperature gradient -(0) in PST case and wall temperature g(0) in PHF case for different values k1,  

and        

k1   -(0)            g(0) 

k2=0.0 k2=0.2 k2=0.0 k2=0.2 

0.1 

0.2 

0.3 

 0.05   0.1 0.311677 

0.283316 

0.247677 

0.278478 

0.244083 

0.199024 

3.659318 

3.959827 

4.381710 

4.104178 

4.504343 

5.077729 

0.1 -0.1 

 0.0 

 0.1 

0.1 0.486861 

0.384581 

0.117757 

0.471930 

0.362416 

0.12234 

2.231337 

2.919283 

4.955648 

2.313248 

3.185716 

4.960275 

0.1 0.05 -0.1 

 0.0 

 0.1 

 0.2 

0.370659 

0.337616 

0.307821 

0.284021 

0.333395 

0.302868 

0.272346 

0.249032 

2.308513 

2.858875 

3.839057 

4.565487 

2.451500 

3.113565 

4.451992 

4.718392 

  

       Chaim [1998] Present result 

   -0.5 

   -0.4 

   -0.3 

   -0.2 

   -0.1 

    0.0 

    0.1 

    0.2 

    0.3 

    0.4 

    0.5  

  2.057411 

  1.796036 

  1.606109 

  1.461201 

  1.346566 

  1.253314 

  1.175756 

  1.110079 

  1.053628 

  1.004495 

  0.961272 

  0.629242 

  0.560520 

  0.485970 

  0.441656 

  0.404823 

  0.373853 

  0.347452 

  0.324425 

  0.304106 

  0.286025 

  0.269801 
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