
© June 2014| IJIRT | Volume 1 Issue 1 | ISSN: 2349-6002 

IJIRT 153086 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 101 

 

Analysis of Mass Transfer with Variable Thermal 

Conductivity in Non-Newtonian Fluid 

 

 

Dr. Sayed Anis Fatima. H 

PG-Department of Mathematics, Govt. Autonomous College Kalaburgi 

 

Abstract - Magneto hydrodynamic flows of mass transfer 

due to combined effect of porosity and visco-elasticity 

with variable thermal conductivity over a non-

isothermal stretching sheet have been investigated  

analytically. The effect of various physical parameters 

like visco-elastic parameter,  thermal conductivity and 

Schmidt number are analyzed on concentration profiles. 

 

Index Terms - Magneto hydrodynamic flow, Thermal 

conductivity, visco-elasticity, porosity. 

 

INTRODUCTION 

 

The analysis of boundary layer flow over a stretching 

sheet play an important role in many engineering 

processes, such as extrusion of polymer sheet, cooling 

of metallic sheet in cooling bath, manufacturing of 

plastic films, artificial fibres, and paper production etc. 

The study of momentum and heat transfer is found to 

be necessary for determining the quality of final 

products of such processes which is explained in detail 

by Karwe and Jaluria  [1988, 1991] Sakiadis [1961a, 

1961b] was the first amongst the others to study such 

problems by considering the boundary layer viscous 

fluid flow over a continuous solid surface moving with 

constant velocity. It was then extended to that of 

stretching of a boundary sheet with linear velocity by 

Crane [1970]. This work has subsequently attracted 

several researchers; Erickson.et.al [1966] extended 

this problem to the case in which the transverse 

velocity at the moving surface is non-zero. Tsou-et.al 

[1967], who investigated heat transfer effect of 

moving sheet with constant surface velocity and 

temperature. However, in reality most of the liquids 

used in industrial applications particularly in polymer 

processing applications are of non-Newtonian in 

nature. The non-Newtonian fluids are being 

considered more important and appropriate in 

technological applications in comparison with 

Newtonian fluids. In view of the importance of these 

applications, Rajagopal et.al [1984], have studied the 

flow behavior of visco-elastic fluid over a stretching 

sheet and gave an approximate solution for the flow. It 

is more appropriate to consider the non-Newtonian 

behavior of these fluids in the analysis of the boundary 

layer flow and heat transfer characteristics, because in 

industrial applications most of the fluids such as 

plastic films and artificial fibers are not strictly 

Newtonian. Considering the survey of literature in 

non-Newtonian fluid flow. Abel and Veena (1998) 

studied the visco-elastic fluid flow and heat transfer in 

a porous medium over a stretching sheet. Gupta and 

Sridar [1985] analyzed the effect of visco-elastic 

parameter on non-Newtonian flow through porous 

medium. Many researchers such as Anderson 

[1992,1995], Chakrabarthi and Gupta [1979], 

Sarpakaya.T [1961] have done their work on MHD 

visco-elastic fluid Flows.  

In above all studies the physical properties of the fluid 

are assumed to be constant, but for liquid metals, it has 

been found that the thermal conductivity k varies with 

temperature in an approximately linear manner, which 

is also true in some polymer solutions in the class of 

Walter’s liquid B [1994], and that leads to non-

linearity in the boundary value problem of heat 

transfer.  Prasad et.al [2000] analyzed the effect of 

momentum and heat transfer of visco elastic fluid flow 

over a non-isothermal stretching sheet assuming the 

thermal conductivity varying linearly with 

temperature. Motivated by all these investigations, we 

contemplate to study the MHD visco-elastic fluid flow 

over a stretching sheet in presence of variable thermal 

conductivity. Mass transfer characteristic is analyzed.  

 

MATHEMATICAL FORMULATION 

 

Consider a steady state two-dimensional 

incompressible visco-elastic laminar flow of a 

Walter's liquid B in porous media over a semi-infinite 
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stretching sheet coinciding with the plane y=0. The 

flow is generated due to stretching of the sheet, caused 

by the simultaneous application of two equal and 

opposite forces along x-axis. Keeping the origin fixed, 

the sheet is then stretched with a speed varying linearly 

with the distance from the origin x=0.  The flow field 

is then exposed under the influence of uniform 

transverse magnetic field in such way that the effect of 

the induced magnetic field is negligible (Anderson 

[1992]). Hence the basic boundary layer equation 

governing the flow, heat and mass transfer in presence 

of internal heat generation takes the form

       (1) 

 
       (2) 

                     (3) 

 

Here,  is the electrical conductivity, B0 is the applied 

magnetic field, k0 is the visco-elastic parameter of the 

Walter’s liquid B. k' permeability of porous medium, 

Q is the volumetric rate of heat generation, k is the 

thermal conductivity and D is the diffusivity. The 

other quantities have their usual meanings. 

The boundary conditions governing the flow are  

u= bx           v = 0          

2C C A x
= +

     at         y=0      

  c c→         as      y→                            (4) 

 Here u and v are velocity components along x and y 

directions respectively. A1, B and A2 are arbitrary 

constants, which depend on the nature of the boundary 

surface.
,wC C  are concentration of chemical spices 

on the boundary surface and concentration in the flow 

region far away from the boundary surface 

respectively. x is measured along the stretching sheet 

and y is normal to the surface. 

 

FLOW ANALYSIS 

 

In order to obtain the mathematical form of the 

velocity, we introduce the     following   similarity 

transformations 

),(fbxu =
 

)( fbv −=
    

Where  

y
b

.


 =
                                 (5)   

With these changes of variables, equation (1) is 

identically satisfied and equation (2) is transformed 

into the following non-linear ordinary differential 

equation.                              

2−=−k−−−n−k     (6)  

Where 
bk

k
b

B
Mn

bk
k oo


===








2

2

1 ,,

 

are non-dimensional visco-elastic, Magnetic and 

porosity  parameters respectively and the boundary 

condition takes the form 

0=f
  

1=f
         at    =0  

f’→0  
0→f

   as    →                     (7) 

Where prime denotes differentiation w.r.t . The exact 

solution of equation  

(6) corresponding to the boundary conditions (7) is 

obtained as 
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The solutions for velocity field is obtained as  

1
,

e
u bxe v b
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− −

= = −
       (9) 

It is of some interest to note that our result (9) gives 

the result of Anderson [1995] in the limiting case of 

k=0   

To solve equation (3) we assume    

( )
w
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C C
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

−
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−
                              (10) 

Using (10), equation (3) transforms to   

'' ' ' 0Scf Sc f   + − =
               (11) 

Where 

Sc
D


=

 is the Schmidt number. 

The boundary conditions become  

 = 1         at    = 0 

 = 0       as     → 0                 (12) 

Since equation (11) is ordinary linear differential 

equation, solving equation (11) subject to the 

boundary conditions (12) is obtained in the following 
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form of confluent hyper-geometric function namely, 

Kummers function (M.Abromowitz and Stegun I.A 

[1972])  

(13) 

 

RESULTS AND DISCUSSION 

 

In order to have a clear insight of the physical problem, 

analytical results are displayed with the help of 

graphical illustration. 

Table-I shows the value of wall concentration gradient 

(0) for different values of Sc and  k1 . Fig-1 is drawn 

to display the graph of non-dimensional concentration 

profile () Vs. for different values of Schmidt 

number Sc in porous and non-porous media.  

We notice from this graph that the effect of increasing 

the values of Sc leads to decrease the concentration 

profile in the flow field. Physically, the increase of Sc 

means decrease of molecular diffusivity D, which 

results in decrease of concentration of boundary layer. 

Hence, the concentration of the species is higher for 

small values of Sc and lower for large values of Sc, i.e. 

species diffusion layer thickness is thinner for heavier 

particles (large values of Sc) than for lighter particles 

(smaller values of Sc). This result is in agreement with 

Abel. M.S et al.[2002] 

 

SUMMARY 

 

Magneto hydrodynamic flows with mass transfer due 

to combined effect of porosity and visco-elasticity 

with variable thermal conductivity over a non-

isothermal stretching sheet have been investigated 

analytically. The effect of various physical parameters 

like visco-elastic parameter,  thermal conductivity 

parameter and Schmidt number are analyzed on  

concentration profile. The specific conclusions 

derived from our study are summarized as follows-                          

1. The thickness of the concentration boundary 

layer decreases with increase the values of 

Schmidt number (Sc) in porous media.  

2. The thickness of the concentration boundary 

layer decreases with increase the values of 

Schmidt number (Sc) in non- porous media with 

reduced magnitude.  

3. Concentration Profile () are quantitatively 

more in porous media. 

 

Table-I : Wall concentration gradient (0) for 

different values  Sc and  k1 
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