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Abstract - we considered the visco-elastic flow over a non-

linearly stretching surface. The effects of thermal 

radiation and viscous dissipation have been taken in 

consideration in the energy equation. The mathematical 

model has been solved numerically by shooting technique 

with higher order integration scheme. 

 

Index Terms - on-linearly stretching surface visco-

elasticity. 

INTRODUCTION 

 

In contrast to the well-known Blasius flow problem 

[2005] which involves laminar viscous boundary layer 

fluid flow above a fixed flat plate, the flow of a visco-

elastic fluid over a rigid plate moving steadily in an 

otherwise quiescent fluid is sometimes referred to as 

Sakiadis flow [1961] after the pioneering work of that 

researcher. 

Unfortunately, great deal of fluid flow applications in 

industrial processes are concerned with non-

Newtonian and visco-elastic fluids, such as polymer 

melts and solution, heat-treated materials traveling 

between a feed roll or materials manufactured by 

extrusion, glass-fiber and paper production, cooling of 

metallic sheets or electronic chips, crystal growing and 

many others. In these cases, the final product of 

desired characteristics depends on the rate of cooling 

in the process and the process of stretching.     

Crane [1970] first discussed the two-dimensional 

boundary layer flow caused by a linear stretching sheet 

in an otherwise quiescent fluid. He obtained a very 

simple closed form of exponential solution. The 

solution of the associated linear heat conduction 

equation was also presented by Crane [1970]. Afzal 

and Varshney [1980], Kuiken [1981] and Banks 

[1986] have considered the more general case of the 

sheet stretching with power-law velocity. Since fluid 

over   stretching sheet has important industrial 

applications in polymer technology, where one deal 

with stretching of plastic sheet. During the 

manufacture of these sheets, the melt issues from a slit 

and is subsequently stretched to achieve the desired 

thickness. The final product of desired characteristics 

strictly depends on the stretching rate, the rate of 

cooling in the process and the process of stretching. In 

view of these applications, consequently, the flow and 

heat transfer from a linearly stretching surface has 

attracted the attention of several researchers; Noor 

Afzal [1993] has obtained heat transfer from a 

stretching surface. The linear stretching problem has 

been extended for hydro-magnetic case by Chkrabarti 

and Gupta [1979], the boundary layer flow due to a 

plate stretching with power-law velocity distribution 

in the presence of a transverse magnetic field is studied 

by Chiam [1995]. Ali [1994] has reported flow and 

heat transfer characteristics on a stretched surface 

subjected to a power-law velocity and temperature 

distributions for three different boundary conditions.  

Furthermore, the flow field of a stretching wall with a 

Power-law velocity variation was discussed by Banks 

[1983]. Recently by Ali [1996], who extended Banks 

work for the stretched surface to be porous for 

different values of injections parameter.  

The physical situation discussed in all the above 

studies is related to the process of linearly stretching 

sheet case. Another physical phenomenon is the case 

in which the sheet is stretched in a non-linear fashion. 

Gupta and Gupta [1977] have underlined that the 

stretching of the sheet may not necessarily be linear. 

In view of this, the nonlinearly stretching sheet was 

investigated by Vajravelu [1991]. Hence, it is 

interesting to study the flow and heat transfer 

phenomenon over a non- linearly stretching sheet. In 

the present chapter, we study the flow and heat transfer 

on a nonlinearly stretching sheet with velocity uw(x) 

for two different types of thermal boundary conditions 

on the sheets. Another effect which bear great 

importance on the heat transfer is the viscous 
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dissipation which is also included in the energy 

equation. 

FLOW ANALYSIS 

 

We consider the flow of an incompressible visco-

elastic fluid past a flat sheet coinciding with the plan 

y=0, the flow being confined to y>0.Two equal and 

opposite forces are applied along the x-axis so that the 

wall is stretched keeping the origin fixed. The steady 

two-dimensional boundary layer equations for this 

fluid in the usual notation are  
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Where (x, y) denotes the Cartesian coordinates along 

the sheets and normal to it, u and v are the velocity 

components of the fluid in the x and y directions 

respectively and  is the kinematic viscosity. The 

boundary conditions for the present problem are 
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u →0 as y →∞                                      (3) 

Where L is the reference length. 
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With these changes of variables, equation (1) is 

identically satisfied and equation (2) is transformed 

into the following non-linear ordinary differential 

equation 

2−=−k−−           (5) 

 and the boundary conditions (3) becomes   

0=f
  

1=f
             at     = 0 

f’→0  
0→f

 as  →                                     (6) 

  The shear stress at the stretched surface is defined as  
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and we obtain from (4) and (7) 
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                                              (8) 

Where  is the viscosity of the fluid. 

Problem {(5)-using(6)} is solved numerically by 

employing a Runge-kutta algorithm for higher order 

initial value problems. Based on the numerical 

solution, we obtained, 
)0(''f

=-1.289747 

 

HEAT TRANSFER ANALYSIS 

 

By using usual boundary layer approximations, the 

equation of the energy for temperature T in the 

presence of radiation and viscous dissipation is given 

by 
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Where  is the density, pc
is the specific heat at 

constant pressure, k is the thermal conductivity of the 

fluid and qr is the radiative heat flux. Using the 

Rosseland approximation for radiation (Siddheshwar. 

P.G et.al [2005]), the radiative heat flux is simplified 

as  

y
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Where  and k are the Stefan-Boltzmann constant 

and the mean absorption coefficient, respectively. We 

assume that the temperature differences within the 

flow such as that the term T4   may be expressed as a 

linear function of temperature. Hence expanding T4 in 

a Taylor series T and neglecting higher order terms 

we get  

434 34  − TTTT
                                                      (11)      

In view to equations (10) and (11), Equation (9) 

reduces to 
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The thermal boundary conditions depends upon the 

type of the heating process being considered, here we 

considered two different types of heating process 

namely 

(1) Prescribed surface temperature   

(2) Prescribed power law heat flux 

Case (1): Prescribed surface temperature (PST case)  

In this circumstance, the boundary conditions are  
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→             as       y→                              (13)   

Tw is wall temperature T is the fluid temperature far 

away from the surface,  is constant and m is wall 

temperature parameter. By considering m=0 and A= 

Tw -T in equation (13) we obtain the constant 

temperature case. Defining the non-dimensional 

temperature 
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Using equation (4), (13) and (14) in (12), we get 
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is the Eckert number, Pr=



 is the Prandtl number, 
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is thermal radiation, the prime 

denotes differentiation with respect to . Realizing 

that the x-coordinate cannot be eliminated from 

equation (15) when 3

2
m

. So, the temperature 

profile always depends on the x-coordinate. 

 Obviously, we get an x-independent similarity 

equation from the above when 3

2
=m

 and  this yields 

equation (15) as  
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and that all solution are then of similar type. 

The boundary conditions for () follow from (13) 

and (14) as  

()=1                   at =0 

 →                   as   →                                                  (18) 

The rate of heat transfer of the surface is derived from 

equation (13) and (14) as  
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Where k is the thermal conductivity. 

Case(2): Prescribed power law heat flux (PHF case) 

In PHF case we define dimensionless new temperature 

variable as  
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with the following boundary conditions 
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Where D is constant and m=0 provides the constant 

heat flux case. 

Using equation (4) and (20) in (12), we get 
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 is the Eckert number, Pr=



 is the Prandtl number 

and 43

3
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is thermal radiation, the prime 

denotes differentiation with respect to .  

 Realizing that the x-coordinate cannot be eliminated 

from equation (22) when 3

1
m

. So, the temperature 

profile always depends on the x-coordinate. 

Obviously, we get an x-independent similarity 

equation from the above when 3

1
=m

 this yields 

equation (22) as              
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and that all solution are then of similar type. 

The boundary conditions for g() follow from (20) and 

(21) as  

g ()=-1      at      =0 

g →         as   →                                                             (24) 

Equation (17) and (23) are the same and then we can 

summarize the complete heat transfer problem as   
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for the PST case (m=2/3)   

While h ()= -1 at =0; g →  as →  and 
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  for PHF case (m=1/3)                

 

NUMERICAL SOLUTION 

 

The procedure for completing the numerical solution 

for h(,.there is no any analytical solution for  the flow 

problem and, accordingly, one had to use numerical 

techniques. It is clear that 
)0(''f

=-1.289747 in this 

problem by taking visco-elastic parameter k1=0.2. 

Since the flow problem is uncoupled from the thermal 

problem, changes in the values of Pr, Nr and Ec will 

not affect the fluid velocity. For this reason, both the 

function f and its derivatives are identical in the 

complete problem (flow and heat transfer). In view of 

the above discussions, we have solved numerically, 

first the problem {(5)-(6)} which provide 
)0(''f

 and 

second, with this result, we solve numerically heat 

transfer problem. This procedure has already been 

applied to discuss some flow and heat transfer problem 

(Cortell.R[2005b]). Equation (5) and (25) can easily 

be written as the first order system.  
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Where the prime denotes differentiation with respect 

to , u1= f, u5 = h and the value of 3(0)u
=

)0(''f
 is 

given.   Withal, in accordance with conditions (6) and  

(18) we obtain 

u1(0)=0, u2(0)=1, u3(0)=-1.289747, u4(0)=
1

1−2𝑘1
 

,u5(0)=1                     (27) 

u2(∞)=0,u3(∞)=0,u5(∞)=0         (28) 

 

Using numerical methods of integration and 

disregarding temporarily the conditions (28), a family 

of solutions of {(26)-(27} can be obtained for 

arbitrarily chosen values of u6 (0). Tentatively we 

assume that a special values of 
)0('

 yields a 

solution for which () and  () vanishes at a certain 

 =    (condition (28)) and satisfies the additional 

condition 

0)(,0)( 52 ==   uu
                                 (29) 

We guess u5 (0) and integrate equation (26) with 

condition (27) as an initial value problem by 

employing Runge-kutta algorithm higher order initial 

value problems with the additional conditions (29). It 

is worth mentioning that, for each numerical solution, 

the  value depends on the non-dimensional 

parameters Pr, Nr and Ec.  

 

RESULTS AND DISCUSSION 

 

In this paper we investigated the visco-elastic 

boundary layer flow and heat transfer over a non-

linear stretching sheet in the presence of radiation and 

viscous dissipation. 

Fig-1 represents the influence of radiation parameter 

Nr on temperature distribution (). From this figure, 

we observe that as the radiation parameter Nr 
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increases, () decreases. This results qualitatively 

agrees with the fact of the effect of radiation is to 

decrease the rate of energy transport to the fluid, 

thereby decreasing the temperature of the fluid. 

Fig-2 represents the effect of Pr on temperature 

distribution (). We infer from this figure that the 

temperature profile decreases with increase in Prandtl 

number (Pr). This is because of the fact that the 

thermal boundary layer thickness decreases with 

increase in Prandtl number (Pr). 

Another effect, which bears great importance on heat 

transfer, is the viscous dissipation. When the viscosity 

of the fluid and/or the velocity gradient is high, the 

dissipation term becomes more important. The graph 

for temperature distribution () for different values 

of Eckert numbers is plotted in Fig-3, The effect of 

increasing Ec is to increase the magnitude of () in 

the flow region in both the cases of PST and PHF. This 

is due to the fact that heat energy is stored in the fluid 

due to frictional heating.    

The graphs for the situation when the boundary has 

been prescribed with heat flux (PHF) are shown in 

fig.4-6. It is noticed from these figures that the wall 

temperature is not unity; it is changed at the wall with 

the change of physical parameters. We observe that 

thermal radiation parameter Nr and Prandtl number Pr 

and Eckert number Ec have same qualitative effects 

which we found in PST case but quantitatively wall 

temperature is more in PHF case. 

 

SUMMARY AND CONCLUSIONS 

 

We considered the visco-elastic flow over a non-

linearly stretching surface. The effects of thermal 

radiation and viscous dissipation have been taken in 

consideration in the energy equation. The 

mathematical model has been solved numerically by 

shooting technique with higher order integration 

scheme. 

The important findings of our study are as follows. 

1. The effect of radiation parameter Nr is to decrease 

the temperature profile (both in PST and PHF 

case).  

2. The effect of Eckert number Ec is to increase the 

temperature profile (both in PST and PHF case).  

3. The effect of Prandtl number Pr is to decrease the 

temperature profile (both in PST and PHF case).  
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