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results indicate a significant in terms of noise tolerance for 
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I. INTRODUCTION 

 

In many pulse Doppler radar applications, target 

detection becomes very difficult when the echo consists 

of high Doppler shift and strong background noise due 

to clutter. To overcome this limitation and to enhance the 

detection performance [1], a novel Radial basis neural 

network (RBNN) filter based on radial basis function 

neural network is developed in this paper. This filter is 

also known as Correlated radial basis neural network 

sidelobe suppression (CRBNSS) filter. MATLAB 

functions are used to develop simulation algorithms for 

radial basis function neural network. The RBNN filter is 

optimized by using computer search with poly-semantic 

sequences as input.  

 

II. RBNN FILTER DESIGN 

 

RBNN filter is designed by simulation model of radial 

basis function neural network using MATLAB functions       

[2, 3] as shown in Fig. 1. It consists of a hidden layer of 

radial basis neurons and an output layer of linear 

neurons. The typical shape of a radial basis transfer 

function used by the hidden layer is a nonlinear Gaussian 

pulse. Each linear output neuron forms a weighted sum 

of these radial basis functions. 

 
Fig.1 Architecture of Radial Basis Function Neural 

Network. 

 

The function, newrb algorithm is used to create a two 

layer network. The first layer has radbas neurons, and 

calculates its weighted inputs with dist function, and its 

net input with netprod function.  The second layer has 

purelin neurons, and calculates its weighted inputs with 

dotprod and its net inputs with netsum. Both the layers 

have biases. Each bias in the first layer is set to sqrt (-

log(0.5))/spread.  

 

The mathematical expressions [4] for each layer are 

given by 
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where S is the input vector of length N, W1,1 is the input 

weight matrix, W2,1
 is the hidden layer weight matrix, b1 

is the input bias vector, b2 is the output bias vector, 

N
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=  is the spread of each radial basis function 
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and l is the maximum Euclidean distance between any 

two centers. 

 

During off-line training, the network minimizes the Sum 

Squared Error (SSE) on the training set to obtain 

optimum weight matrix. 

The SSE is ( )
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where   dk , k = 1,2, … ,N is a desired response.  

 

The network is trained in off-line with the desired 

response by calling the function   net = newrb(y2, d, goal, 

spread). Initially the radbas layer has no neurons. Initial 

weights are taken as null vector. At each iteration (called 

epoch), the input vector which results in lowering the 

network error, it is used to create a radbas neuron. The 

error of the new network is checked, and if that is low 

enough, then the process of newrb is completed. 

Otherwise, the next neuron in the hidden layer is added 

and weights are updated. This process is repeated until 

either the goal is met or the maximum number of neurons 

is reached. 

 

The output is obtained on-line by using sim function with 

a given input pattern of the received signal vector R. The 

function call is output = sim(net, R). The network with a 

SIMULINK block, gensim(net, R ) is used to generate a 

simulation model for the trained network. 

 

III. PERFORMANCE OPTIMIZATION 

 

The performance optimization of receiver system is 

carried out by using poly-semantic sequences of length 

9 to 189 as the input so that the output of the 

conventional filter yields optimum signal-to-sidelobe 

ratio (SSR) and integrated sidelobe level (ISL) values. 

But, when these optimum sequences are applied on filter 

based on neural networks, the filter output may not yield 

optimum values of SSR and ISL at a given length since 

the output performance depends on both the type of 

algorithm and the network parameters. When radial 

basis function neural network algorithm is employed, the 

default values of the parameters, the goal (mean squared 

error) and the spread (spread of radial basis functions) 

are generally taken as 0.0 to 1.0 respectively. These 

values do not yield optimum output values for specific 

applications. For good design, a spread should be 

selected such that it is larger than the distance between 

adjacent input vectors and smaller than the distance 

across the whole input space. In general, the goal is set 

at less than the error value of 10-07. 

     In the present application the CRBNSS filter is used 

as a radar pulse compression and side lobe suppression 

filter, the output waveform is not an autocorrelation 

function. Hence, the filter output is trained as a 

correlated main lobe at zero time lag and mismatched 

side lobes at other time lags, similar to the 

autocorrelation function. So, in the output waveform, the 

main lobe amplitude as (0)r  and side lobe amplitudes 

as ( ), 1, 2,..., 2, 1r k k N N N N= − + − + − − . Since 

(0)r  is set at ‘N’ in the desired response, no loss in 

SNR occurs during filtering. The spread of the network 

depends on the pattern and length of the input vector 

sequence. The optimization technique for CRBNSS 

filter developed in this chapter is a computer search to 

obtain a spread value called optimum spread value of the 

neural network which yields maximum SSR and 

minimum ISL. To obtain optimum spread values of the 

network, initially the network is trained with all 

combinations of input sequence patterns at each length 

by varying the spread value of the network.  

 

IV. SPREAD SELECTION FOR CRBNSS FILTER 

 

The poly-semantic sequences of length 9 to 189 are used 

as the input sequences for the CRBNSS filter in order to 

evaluate the performance in terms of SSR and ISL. The 

SSR and ISL values at the output of the CRBNSS filter 

with different spread values of the network are 

calculated. Table I. shows the maximum SSR and 

minimum ISL values for poly-semantic sequences at 

optimum spread values of CRBNSS filter. The CRBNSS 

filter yields maximum SSR and minimum ISL values at 

particular spread value of the network at each poly-

semantic sequence length. These spread values are 

called optimum spread values of the neural network. The 

optimum spread value is the spread of the network at 

which SSR value becomes maximum and ISL value 

becomes minimum. 

 

Table I. SSR and ISL values for poly-semantic 

sequences at  optimum spread values of CRBNSS filter. 
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It is observed that all the poly-semantic sequences 

resulted in maximum SSR value above 300 dB and 

minimum ISL value below -300 dB at corresponding 

optimum spread values. 

 

Table II. SSR values at different spreads of the network 

for poly- semantic sequence of length 27.  

S.No Spread SSR in dB 

1 0.1 337.70 

2 0.2 330.63 

3 0.3 332.73 

4 0.4 339.94 

5 0.5 346.30 

6 0.6 354.52 

7 0.7 335.51 

8 0.8 335.33 

9 0.9 303.44 

10 1.0 265.72 

Table II. shows the SSR value at different spread values 

of the network for poly-semantic sequence of length 27. 

It is observed that the network yields maximum SSR 

value of 354.52 at spread 0.6. Thus for poly-semantic 

sequence of length 27, the optimum spread value is 0.6. 

Similarly for poly-semantic sequences of other length, 

the spread value can be obtained.  

It is also observed that as spread value of the network 

increases from 0.1, the SSR value also increases. At a 

particular spread value, the SSR becomes maximum and 

further SSR decreases as spread increases. This is 

because at high spread values, the neural network 

generates more side lobes. 

 

V.  PERFORMANCE EVALUATION AND 

SIMULATION RESULTS 

 

A. Noise Robustness 

To evaluate the noise performance, all poly-semantic 

sequences which are perturbed by Gaussian noise of 

different SNRs of 10 dB to -10 dB are considered to be 

input sequence. Fig.2 and Fig.3 shows the variations of 

SSR and ISL at the output of CRBNSS filter for poly-

semantic sequences under noise-free and noisy 

environments at different SNRs of 10 dB to -10 dB when 

the two stationary targets are separated by 2 SPDA.  

 

Fig. 2 Variations of SSR at the output of CRBNSS filter 

for poly-semantic sequences under noise-free and noisy 

environments at different SNRs of 10 dB to -10 dB when 

the two stationary targets are separated by 2 SPDA 
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No Noise

Sequence 

Length 
Spread 

SSR 

(in dB) 

ISL 

(in dB) 

9 0.5 323.04 -313.52 

18 0.5 341.67 -320.22 

27 0.6 354.52 -331.17 

36 0.7 355.77 -331.16 

 45 0.8 351.68 -326.20 

54 0.9 337.32 -311.05 

63 1.0 348.42 -321.48 

72 1.2 327.86 -300.09 

81 1.2 349.95 -320.43 

90 1.3 328.74 -300.15 

99 1.3 355.75 -325.66 

108 1.3 328.72 -299.44 

117 1.3 339.35 -309.72 

126 1.5 335.59 -305.24 

135 1.6 331.10 -303.71 

144 1.6 337.14 -306.06 

153 1.6 344.56 -313.76 

162 1.7 335.55 -304.33 

171 1.8 336.09 -303.72 

180 1.8 337.07 -304.85               

189 1.8 354.01 -324.61 
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Fig. 3 Variations of ISL at the output of CRBNSS filter 

for poly-semantic sequences under noise-free and noisy 

environments at different SNRs of 10 dB to -10 dB when 

the two stationary targets are separated by 2 SPDA.  

   

B. Output Waveforms for Two Targets 

Fig.4 shows the output waveforms of the CRBNSS filter 

for poly-semantic sequences of length 27, 36, 99 and 189 

for two targets separated by SPDA = 10 in noise-free.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.4 Waveforms at the output of the CRBNSS filter for 

poly-semantic sequences of length (a) 27 (b) 36 (c) 99 

and (d) 189 for two targets separated by 10 SPDA. 

 

It is observed from the Fig. 4 that the side lobe levels are 

below -35 dB with respect to the main lobe level and the 

side lobe levels decreases to -50 dB as time lag changes 

from zero to (N-1). 

 CONCLUSIONS 

 

The CRBNSS filter using radial basis neural networks 

have been designed and simulated for radar signal 

design. The performance of the RBNN filter is optimized 

by selecting the spread values of the radial basis neural 

network to give maximum SSR and minimum ISL. It is 

observed that the SSR values degrade from 354.52 dB to 

127.31 dB, and ISL values degrade from -331.17 to -

96.91.  

It is observed from the Fig. 5.16 (a) that the side lobe 

levels are below -35 dB with respect to the main lobe 

level and the side lobe levels decreases to -50 dB as time 

lag changes from zero to (N-1). 
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