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Abstract—One of the most crucial processes for design 

closure is placement for very-large-scale integrated 

(VLSI) circuits. By equating the analytical placement 

problem to the process of training a neural network, we 

provide a revolutionary GPU-accelerated placement 

framework called DREAMPlace. DREAMPlace, which 

is built on top of the widely used deep learning 

framework PyTorch, can outperform the state-of-the-art 

multithreaded placer RePlAce in terms of global 

placement speed without sacrificing quality by about 40 

percent. We think that our effort will pave the way for 

tackling old EDA issues using modern hardware and 

software for AI. 

 

Index Terms— GPU, GP, LG, NVIDIA Tesla V100 GPU, 

Pytorch  

I. INTRODUCTION 

 

In the VLSI design flow, placement is a crucial yet 

time-consuming step. Its effectiveness greatly affects 

subsequent steps in the flow, including routing and 

post-layout optimisation, as it establishes the 

placements of standard cells in the actual layout. In 

addition to providing a fairly precise assessment of 

routed wirelength and congestion, a placement 

solution is also very helpful in directing earlier stages, 

such as logic synthesis. To complete a design, 

commercial design flows frequently use multiple core 

placement engines. Placement takes hours for complex 

designs since it requires extensive numerical 

optimisation, which slows down design iterations. 

Because of this, extremely quick yet good placement 

is always preferred. 

Analytic placement is the current state of the art for 

VLSI placement [1]-[15]. It basically solves non-

linear optimization problems. Analytical placement 

can produce high-quality solutions, but it is also 

known to be relatively slow [11], [13], [14]. Here is a 

brief introduction to the analytical placement problem. 

Suppose the circle is described as a hypergraph H = 

(V, E). where V denotes the set of vertices (cells) and 

E denotes the set of hyperedges (nets). Let x,y be the 

cell location. The goal of analytical placement is to 

minimize route length and place non-overlapping cells 

in the layout. Analytical placement can be roughly 

divided into quadratic placement and nonlinear 

placement. Square placement solves the problem by 

repeating an unconstrained length minimization step 

and a crude justification or propagation step [10]–[13]. 

The wire length minimization step typically uses a 

quadratic wire length model to minimize the total wire 

length regardless of overlap between cells.  

The coarse-grained legalization step eliminates 

duplication based on a heuristic approach without 

explicitly considering the cost of wire length. By 

repeating these two steps, the cells can be dispersed 

step by step. At the same time, the cost of cable length 

is minimized. Nonlinear placement solves the 

placement problem directly using nonlinear 

optimization techniques [1]–[9], [12].  

It formulates a nonlinear optimization problem with a 

density-constrained wire length goal. By relaxing the 

target density constraint, a gradient descent-based 

approach can be employed. I am looking for a quality 

solution. This article will focus on nonlinear 

placement approaches, as many commercial tools such 

as Cadence Innovus [5] and Synopsys IC Compiler [1] 

employ nonlinear placement approaches. To speed up 

placement, existing parallelization efforts are mainly 

aimed at multithreaded CPUs with partitioning [6], 

[10], [7]. As the number of threads increases, global 

placement quickly saturates speed by about a factor of 

5, and typically degrades quality by 2-6%. Kong et al. 

We investigated GPU acceleration for analytical 

deployment [22].  

They combined clustering and declustering with 

nonlinear placement optimization. By parallelizing the 

nonlinear placement part, we observed an average 
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speedup of 15x in global placement with less than 1% 

quality loss. Lynn et al. proposed a GPU-accelerated 

technique for wire length gradient calculation and area 

accumulation [23], but their experiments were not 

considered. Real-world operations such as density cost 

calculations and validation with real-world analytical 

placement flows were lacking. Moreover, current 

deployment research faces challenges due to the lack 

of well-maintained public frameworks and significant 

development effort, raising the bar for systematic 

validation of new algorithms. The key contributions 

are summarized as follows.  

We take a totally new perspective of making an 

analogy between placement and deep learning, and 

build an opensource generic analytical placement 

framework that runs on both CPU and GPU platforms 

developed with modern deep learning toolkits.  

A variety of gradient-descent solvers are provided, 

such as Nesterov’s method, conjugate gradient 

method, and Adam [25], with the help from deep 

learning toolkit.  

We propose efficient GPU implementations of key 

kernels in analytical placement like wirelength and 

density computation.  

We demonstrate around 40× speedup in global 

placement without quality degradation of the entire 

placement flow over multi-threaded RePlAce 

implementations. More specifically, a design with one 

million cells finishes in one minute even with 

legalization. The framework maintains nearly linear 

scalability with industrial designs up to 10-million 

cells. 

 

The source code is published on Github1. To clarify, 

translating the placement problem into a deep learning 

problem is aimed at solving placement using a toolkit. 

This is orthogonal to using deep learning models for 

deployment. The rest of the work is organized as 

follows.  

Section II describes background and motivation.  

Section III describes the detailed implementation.  

Section IV presents the results.  

Section V completes the work.   

 

2. PRELIMINARIES 

 

Analytical Placement 

Analytical deployment typically consists of three 

steps: Global Housing (GP), Legalization (LG), and 

Detail Housing (DP). Global placement distributes the 

cells in the layout while minimizing the target cost. 

Legalization eliminates any remaining overlap 

between the two. Align the cell and place the cell in 

the placement position. Fine alignment performs 

incremental adjustments to further improve quality. 

Global deployment is usually the most time-

consuming part of analytical deployment. The goal of 

global deployment is to minimize the cost of density-

constrained cable lengths. The formulation can be 

written as 

 
 

Analogy to Deep Learning 

Both analytical placement solving and neural network 

training inherently solve nonlinear optimization 

problems, so let's explore the fundamental similarities 

between the two problems. Compare the wire length 

cost to the error of misprediction and the density cost 

to the regularization term.Figure1 shows the objective 

functions for the two problems. In training a neural 

network, each data instance is input to the network 

with a feature vector xi and a label yi, and the neural 

network predicts a label φ(xi; w).  

The task of training is to minimize the overall goal 

Beyond the weight w, the target consists of prediction 

errors.  
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Deep learning toolkits currently consist of three low-

level stacks Operator (OP), automatic gradient 

derivation and optimization The engine shown in 

Figure 2a. TensorFlow or PyTorch provides mature 

and efficient implementations of these three. A stack 

with both CPU and GPU acceleration compatibility. 

The toolkit also provides convenient APIs for 

extending existing set. Each custom operator should 

have a well-defined definition Forward and backward 

functions for computing costs and gradients. To 

develop an analytics lab using the deep learning 

toolkit, All you need to implement is the wire length 

and wire length custom operator. Density cost for C++ 

and CUDA. Then you can build your placement A 

Python framework that requires very little 

development effort and is easy to build Integrate 

various optimization engines into your toolkit. The 

placement framework can run on both CPU and GPU 

platforms. A lot of effort was required to develop the 

conventional placement machine When building the 

entire software stack using C++. So the bar is from the 

design and validation of new placement algorithms is 

very high thanks to your development efforts. use deep 

learning Toolkits allow researchers to focus on 

developing critical tools Parts such as low-level 

operators and high-level optimization engines. 

 

The ePlace/RePlAce Algorithm 

ePlace/RePlAce is a state-of-the-art global placement 

algorithm family that models layouts and netlists as 

electrostatic systems [6]-[8]. The cable length cost 

originally proposed by [27], [28] uses the weighted 

average cable length (WA).  

 

 

 

3. THE DREAMPLACE ALGORITHMS 

 

We observe that starting from a random initial 

placement achieves the same quality (< 0.04% 

difference) with significantly less runtime (21.1% in 

Figure 3). In initial placement, standard cells are 

placed in the center of the layout with a small Gaussian 

noise. In our experiments, the scales of the noise are 

set to 0.1% of the width and height of the placement 

region. The kernel global placement iterations refer to 

the loop that involves the computation of wirelength 

and density gradient, optimization engines, and cell 

location updating. After the global placement 

converges, legalization is performed to remove 

remaining overlaps and align cells to placement sites. 

The last step before the output is detailed placement to 

refine the placement solutions relying on NTUplace3 

[4]. The rest of this section will focus on GPU 

acceleration to the ePlace/RePlAce algorithm [6], [8]. 

a) Density Forward and Backward 

Forward and backward of density cost is a 

computation-intensive procedure. Figure 4b plots the 

dependency graph for density cost forward and 

backward. The computation consists of four steps:  

1) compute density map ρ;  

2) compute au,v;  

3) compute ψ in forward or ξ in backward;  

4) compute D in forward or ∂D ∂xi in backward.  

 
We model this computation flow as a dynamic 

bipartite graph forward and backward process, as 

shown in Figure 5. First, density map calculation is 

modeled as a bipartite graph forward or a special 2D 

histogram problem where one cell may update 

multiple bins [31]. Then the electric potential and field 

are solved via DCT and other Fourier-related 

transforms. Finally, the electric force inflicted on each 

cell is collected from its overlapped bins, which can be 

modeled as a 2D gathering problem [31]. 

1)Dynamic Bipartite Graph Forward for Density Map: 

Each step of density map computation updates bins 

based on the overlapping area of corresponding cells. 
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Thus it can be modelled as a 2D histogram problem or 

a dynamic bipartite graph forward, as shown in Figure 

5a. Each edge in the bipartite graph represents an 

update to the entry of the target bin in the density map, 

where the edge weight represents the overlapping area 

of the {cell, bin} pair. The reason why we call it 

“dynamic” is that, as cells move, edges in the bipartite 

graph, which indicate overlaps between cells and bins, 

will change accordingly. A naive algorithm to 

parallelize this step is to allocate one GPU thread for 

each cell and use atomic addition to accumulate the 

overlapping areas with bins [30]. However, as a cell 

may cover multiple bins, simply using one GPU thread 

to update all overlapped bins sequentially will cause 

load imbalance problem due to theng cells.  

 
Thus, it can be modeled as a particular variety in cell 

sizes. Empirically, the number of bins covered by a 

cell can vary from ∼ 10 to ∼ 1000. This ill-balanced 

workload within a thread warp introduces a big chunk 

of idle time and significantly degrades the 

performance. Therefore, we develop the following 

techniques to address this issue. 

2) Dynamic Bipartite Graph Backward for Electric 

Force: In the electric force computation, each cell 

receives the forces from the bins it overlaps with. 

Thus, the computation can be viewed as a 2D 

gathering problem or a dynamic bipartite graph 

backward, as shown in Figure 5b. Each edge 

represents the force from a bin, and the edge weight is 

the amount of the force. The weight is computed as the 

product of the overlapping area between the cell and 

the bin and the electric field at the bin. A natural 

strategy to accelerate this step is to allocate one thread 

for each cell and accumulate the forces sequentially 

from its overlapping bins [30]. However, considering 

this computation task shares a similar structure with 

the density map computation, we borrow the same idea 

from Section III-B1 by sorting the cells and allocating 

multiple threads for each cell. 

b) Density Weight Updating  

We need to update the density weight λ in Equation (2) 

in each iteration to penalize the density cost. RePlAce 

[8] uses the following equations to update λ. 

 

c) Optimization Engine 

ePlace/RePlAce [6], [8] uses Nesterov’s method as the 

gradientdescent solver with a Lipschitz-constant 

approximation scheme for line search. We implement 

the same approach in Python leveraging the efficient 

API provided by the deep learning toolkit. The 

framework is compatible with other well-known 

solvers in deep learning toolkits, i.e., various 

momentum-based gradient descent algorithms like 

Adam [13] and RMSProp, providing additional solver 

options.  

d) Legalization  

We also develop legalization as an operator in 

DREAMPlace. It first follows the Tetris-like 

procedure similar to NTUplace3 [4]. Then it performs 

Abacus row-based legalization [13]. This step copies 

the cell locations from GPU to CPU and executes 

legalization purely on CPU because we observe that it 

only takes several seconds even for million-size 

designs with a single CPU thread. 

d) Extension to Consider Routability  

To optimize routing congestion, we adopt cell 

inflation to optimize congested regions [14]. We 

follow a similar scheme to RePlAce [8], which 

invokes the NCTUgr global router [16] to get the 

routing overflow map during placement iterations. For 

each metal layer, we compute the ratio between 

routing demand and capacity at each routing tile. Then 

we use the maximum ratio across all layers to compute 

the inflation ratio for each tile. 

 

4. EXPERIMENTAL RESULTS 

 

The framework was developed in Python using 

PyTorch for the optimizer and APIs and C++/CUDA 

for the low-level operators. CPU parallelism was 

implemented using OpenMP for wire length and 

density operators. Both DREAMPlace and RePlAce 

[8] programs run on a Linux server with 40-core Intel 

E5-2698 v4 @2.20 GHz and one NVIDIA Tesla V100 

GPU based on Volta architecture. The ISPD 2005 
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competition [13] and large-scale industrial design 

benchmarks were adopted. We ran experiments using 

both double-precision floating point (float64) and 

single-precision floating point (float32) on CPU and 

GPU. Uses the same container dimensions as 

RePlace.  

 

Placement Acceleration 

DREAM Place runs on the CPU and is 2x faster than 

RePlAce with 40 threads on GP. RePlAce [8] crashed 

on his 6th iteration of Nesterov's optimization on his 

10 million cell industry benchmark.  

A possible cause is the maximum memory usage. 

RePlace exceeded maximum memory (64 GB). Before 

the crash, it took 3396 seconds to take first place, with 

Nesterov averaging 7.5 seconds each iteration. This 

benchmark with DREAMPlace requires 1000 

iterations, so the estimated execution time was 3396 + 

1000 × 7.5 ≈ 10896 seconds. For all RePlAce runs, the 

initial placement takes 25-30% of the overall 

placement time, and the non-linear placement solution 

takes about 70-75%. DREAMPlace's LG is about 10x 

faster than NTUplace3 Legalizer in the RePlAce flow. 

NTUplace3 handles DP for both placers, so runtimes 

are similar. The overall placement flow speedup is 

4.6x for GPU and 2.7x for CPU.  

 

Acceleration of Low-Level Operators 

We further investigate the efficiency of the low-level 

operators, e.g., wirelength forward and backward, 

DCT/IDCT, and density forward and backward. 

Figure 10 compares three approaches discussed in 

Section III-A. “Net-by-Net” denotes the net-level 

parallelization; “Atomic” denotes the pin-level 

parallelization with atomic operations in Algorithm 1 

[30]; “Merged” denotes the combined forward and 

backward implementation in Algorithm 2. When using 

float32 on GPU, the merged approach achieves 3.7× 

speedup over the netby-net one and 1.8× speedup over 

the atomic one. On CPU, the atomic strategy is 20% 

slower than the net-by-net strategy with 40 threads, 

while the merged strategy is over 30% faster. 

Meanwhile, a promising speedup factor of 7.5× from 

a single thread to 40 threads can be achieved with the 

net-by-net strategy. Figure 11 compares the 2D 

DCT/IDCT implementation using 2Npoint FFT 

(“DCT-2N” and “IDCT-2N”), N-point FFT (“DCT-

N” and “IDCT-N”), and N-point 2D FFT (“DCT-2D-

N” and “IDCT2D-N”) [32]. Considering the map sizes 

in the experiment (from 512 × 512 to 4096 × 4096) 

with float32, the N-point DCT implementation is 2.1× 

faster [30] and the N-point 2D implementation can be 

5.0× faster. For IDCT, the N-point implementation 

achieves 1.3× speedup and the 2D implementation 

achieves 4.1× speedup. This result demonstrates the 

efficiency of Algorithm 4. As DCT/IDCT is used in 

the density operator, in Figure 12, the efficiency of the 

entire density forward and backward procedure is 

compared for GPU and CPU implementations. With 

all the speedup techniques, an average of 1.5 ∼ 2.1× 

speedup on GPU can be achieved with the current 

implementation over the preliminary DAC version 

[30]. For the parallel CPU implementation, 3.1× 

runtime reduction can be achieved with 40 threads. 

 

Routability-Driven Placement 

To validate the run-time benefits of routability-driven 

placement, we performed an experiment using the 

DAC 2012 competition benchmark [41]. 

Figure 7.1 Output simulation for a,cb,cc,cd,ce 

We Assume values for one module Ca=10, Cb=4, 

Cc=22, Cd=40, Ce=5., this gives the output results 

simulation waveform for FPGA module. For solution 

quality, consider two key metrics: 'sHPWL' is the 

scaled line length and 'RC' is the routing congestion.  

In competition, RC is defined as the weighted average 

of the overruns in Figure 8 above. Average GPU 

runtime ratio for ISPD2005 and industry benchmarks 

with different number of CPU threads. 

DREAMPlace's TCAD version runtime normalized to 

V100 

Using float64 matches the relationship between Tables 

II and III. The normalized ratio of 40 threads to GPU 

is annotated for easy comparison 
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Figure 7.2 Output simulation for module.2 values. 

 
Figure 7.3 For module Ca=16,Cb=29,                                 

Figure 7.4 Layout process for   Cc=72,Cd=18,Ce=50  

dream placement 

CONCLUSION 

 

By transforming the solution to the traditional 

analytical placement problem into a neural network 

training problem, we use a fresh approach in this 

research. We create the new open-source placement 

engine DREAMPlace with GPU acceleration using the 

deep learning framework PyTorch. In comparison to 

the state-of-the-art RePlAce running on several 

threads, it provides a speedup of about 40% in global 

placement without compromising quality for academic 

and industrial benchmarks. To increase overall 

efficiency, we investigate various low-level operator 

implementations for forward and backward 

propagation. Additionally, DREAMPlace is very 

extendable, allowing for the simple scripting of high-

level programming languages like Python to include 

additional algorithms/solvers and new objectives. We 

intend to look at GPU-accelerated detailed cell 

inflation for routability and net weighting for timing 

optimisation [29], [35], [37]. 

For even more performance, it can be expanded to 

make use of multi-GPU platforms. To ensure run-to-

run determinism, we intend to look into the 

effectiveness of solutions that use fixed point 

numbers. We anticipate that this approach will open 

up new directions for addressing traditional EDA 

challenges because DREAMPlace decouples the high-

level algorithmic design from low-level acceleration 

efforts. 
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