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Abstract-The 𝑾-energy of a semigraph 𝑮 is the sum of 

the absolute values of its 𝑾-eigenvalues. In this paper we 

show that the graph energy of the classes of paths and 

cycles is more than the W-energy of the semigraphs when 

some vertices are replaced by middle vertices.  
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1. INTRODUCTION 

 

The concept of semigraph is a natural generalization 

of the graph introduced by E. Sampathkumar [7] 

wherein an edge may contain more than two vertices 

having middle vertices apart from the usual end 

vertices. A semigraph 𝐺 is a pair (𝑉, 𝑋), where 𝑉 is a 

non-empty set whose elements are called vertices of 𝐺 

and 𝑋 is a set of ordered 𝑛-tuples called edges of 𝐺 of 

distinct vertices, for various 𝑛 ≥ 2, satisfying the 

following conditions: 

SG1: Any two edges have at most one vertex in 

common. 

SG2: Two edges (𝑢1, 𝑢2, … , 𝑢𝑚) and (𝑣1, 𝑣2, … , 𝑣𝑛) 

are equal if and only if 

(i) 𝑚 = 𝑛 and 

(ii) either 𝑢𝑖 = 𝑣𝑖  or 𝑢𝑖 = 𝑣𝑛−𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛. 

Thus the edge (𝑢1, 𝑢2, … , 𝑢𝑛) is the same as 

(𝑢𝑛, 𝑢𝑛−1, … , 𝑢1). 

If 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑛) is an edge of a semigraph, we 

say that 𝑣1 and 𝑣𝑛 are the 𝑒𝑛𝑑 vertices of edge 𝐸 and 

𝑣𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1 are the middle vertices or 𝑚-

vertices of the edge 𝐸 and also the vertices 

𝑣1, 𝑣2, … , 𝑣𝑛 are said to belong to the edge 𝐸. Two 

vertices 𝑢 and 𝑣, 𝑢 ≠ 𝑣, in a semigraph are adjacent if 

both of them belong to the same edge. 

An edge containing at least one 𝑚-vertex is called an 

𝑆-edge, otherwise it is called an ordinary edge. A 

semigraph with 𝑝 vertices and 𝑞 edges is called a 

(𝑝, 𝑞) semigraph. A partial edge of an edge 𝐸 =

(𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑛) is a (𝑘 − 𝑗 + 1) tuple 𝐸′ =

(𝑣𝑖𝑗 , 𝑣𝑖𝑗+1 , … , 𝑣𝑖𝑘) where 1 ≤ 𝑗 < 𝑘 ≤ 𝑛. We say that, 

the partial edge 𝐸′ has cardinality 𝑘 − 𝑗 + 1, which we 

again denoted by |𝐸′|. A subedge of an edge 𝐸 =

(𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑛) is a 𝑘-tuple 𝐸′ = (𝑣𝑖𝑗1
, 𝑣𝑖𝑗2

, … , 𝑣𝑖𝑗𝑘
) 

where 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑘 ≤ 𝑛. 

The number of vertices belonging to an edge 𝐸 is 

called the cardinality of 𝐸 and is denoted by |𝐸|. A 

partial edge of cardinality 2 is called a unit partial 

edge. The length of an edge 𝐸 is the number of unit 

partial edges of the edge 𝐸 and is denoted by 𝑙(𝐸). 

Thus if 𝐸 = (𝑣1, 𝑣2, … , 𝑣𝑘) then 𝑙(𝐸) = 𝑘 − 1 and 

|𝐸| = 𝑘. The length of a partial edge is defined 

similarly. If the vertices 𝑢, 𝑣 are adjacent, then 

(𝑢,… , 𝑣) is a partial edge whose length is denoted by 

𝑙(𝑢, 𝑣). 

Three vertices 𝑣𝑖 , 𝑣𝑗  and 𝑣𝑘 are said to form a triangle 

in a semigraph 𝐺, if they are pairwise adjacent but do 

not lie on the same edge. If the vertices 𝑣𝑖 , 𝑣𝑗 and 𝑣𝑘 

form a triangle in a semigraph then the partial edges 

(𝑣𝑖 , … , 𝑣𝑗), (𝑣𝑗 , … , 𝑣𝑘) and (𝑣𝑘 , … , 𝑣𝑖) are called the 

sides of the triangle. 

Let G be a simple graph with k vertices and A(G) be 

its adjacency matrix. Let 𝜆1, … , 𝜆𝑘 be the eigenvalues 

of A(G). Then the energy of G [2], denoted by E(G), is 

defined as 𝐸(𝐺) = ∑ |𝜆𝑖|
𝑘
𝑖=1 .  The energy of the cycle 

𝐶𝑘 and the path 𝑃𝑘 are given by 

𝐸(𝐶𝑘) =

{
 
 
 
 

 
 
 
 4 cos

𝜋
𝑘

sin
𝜋
𝑘

,  if 𝑘 ≡ 0(mod4);

4

sin
𝜋
𝑘

,  if 𝑘 ≡ 2(mod4);

2

sin
𝜋
2𝑘

,  if 𝑘 ≡ 1(mod2).
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𝐸(𝑃𝑘) =

{
  
 

  
 

2

sin
𝜋

2(𝑘 + 1)

− 2,  if 𝑘 ≡ 0(mod2);

2 cos
𝜋

2(𝑘 + 1)

sin
𝜋

2(𝑘 + 1)

− 2,  if 𝑘 ≡ 0(mod2).

 

A semigraph may have edges having several vertices 

including possible middle vertices apart from two end 

vertices. The 𝐿-adjacency matrix 𝐿(𝐺) = (𝑙𝑖𝑗) of a 

semigraph 𝐺 was defined in [6] to reflect this aspect 

by defining 

𝑙𝑖𝑗

= {
0,  if 𝑣𝑖 and 𝑣𝑗 are not adjacent or 𝑣𝑖 = 𝑣𝑗;

𝑙(𝑣𝑖 , 𝑣𝑗)  if 𝑣𝑖 and 𝑣𝑗 are adjacent,
 

where two vertices 𝑣𝑖 and 𝑣𝑗 are adjacent if they 

belong to the same edge. 

Given a (𝑝, 𝑞)-semigraph 𝐺, we define its weighted 

adjacency (or 𝑊-adjacency) matrix 𝑊(𝐺) = (𝑤𝑖𝑗),  

where 

𝑤𝑖𝑗

= {

0,  if 𝑣𝑖 and 𝑣𝑗  are not adjacent or 𝑣𝑖 = 𝑣𝑗 ;

𝑙(𝑣𝑖 , 𝑣𝑗)

𝑘
 if 𝑣𝑖 and 𝑣𝑗  are adjacent lying on an edge of length 𝑘.

 

Note that 𝑊(𝐺) is a symmetric 𝑝 × 𝑝 matrix with 

entries from ℚ, the field of rationals. Also, if 𝑣𝑖 , 𝑣𝑗  are 

end vertices of an edge 𝐸, then 𝑤𝑖𝑗 =
𝑙(𝑣𝑖,𝑣𝑗)

𝑙(𝐸)
= 1. Let 

𝜇1, … , 𝜇𝑘 be the eigenvalues of W(G) (called W- 

eigenvalues). The W-energy 𝐸𝑊(𝐺) of the semigraph 

G is the sum of the absolute values of its W-

eigenvalues i.e., 𝐸𝑊(𝐺) = ∑ |𝜇𝑖|
𝑘
𝑖=1 . 

In section 2, we show that the graph energy of the 

classes of paths and cycles is more than the W-energy 

of the semigraphs when some vertices are replaced by 

middle vertices. 

2. RESULTS 

 

By introducing 𝑚 number of middle vertices to each 

edge of the cycle 𝐶𝑛, the induced semigraph obtained 

is denoted by 𝐶𝑛,𝑚. Similarly, by introducing 𝑚 

number of middle vertices to each edge of the path 𝑃𝑛, 

the induced semigraph obtained is denoted by 𝑃𝑛,𝑚. 

We compare the energy of 𝐶𝑛 and 𝑃𝑛 with the 𝑊-

energy of the induced semigraphs by making use of 

the upper bound for 𝑊 energy of semigraphs obtained 

in Theorem. 3.7 of [5]: For a (𝑝, 𝑞)-semigraph 𝐺, we 

have, 𝐸𝑊(𝐺) ≤ √−2𝑝ℎ2, 

where −ℎ2 = ∑𝐸∈𝑋  
(|𝐸|)2(|𝐸|+1)

12(|𝐸|−1)
. 

Theorem 2.1: Suppose 𝑘 ≥ 9 and 𝑘 ≡ 3(mod6). Let 

𝐶𝑘/3,2 be the semigraph with 𝑘 vertices having 
𝑘

3
 

number of edges each of cardinality 4 as shown below. 

 
Fig. 2.1 Semigraph 𝐶𝑘/3,2 

Then 𝐸𝑊(𝐶𝑘/3,2) < 𝐸(𝐶𝑘). 

 

Proof: By Theorem. 3.7 of [5], it is enough to show 

that 𝐸(𝐶𝑘) > √−2ℎ2𝑘  as √−2ℎ2𝑘 is an upper bound 

for 𝐸𝑊(𝐶𝑘/3,2), where −ℎ2 is the coefficient of 𝜂𝑘−2 

in the                                  𝑊-characteristic polynomial 

of 𝐶𝑘/3,2 is given by −ℎ2 = ∑  𝐸∈𝑋
|𝐸|2(|𝐸|+1)

12(|𝐸|−1)
. Now, the 

semigraph 𝐶𝑘/3,2 has 
𝑘

3
 number of edges each edge of 

cardinality 4 and so, we have, 

−ℎ2 =
𝑘

3
×
16 × 5

12 × 3
=
20

27
𝑘 

and so 

√−2ℎ2𝑘 = √2 ×
20𝑘

27
× 𝑘 = 𝑘√

40

27
 

Since 𝑘 is odd, 𝐸(𝐶𝑘) =
2

sin 
𝜋

2𝑘

 and so it is enough to 

show 
2

sin 
𝜋

2𝑘

> 𝑘√
40

27
 for all 𝑘 ≥ 9 and 𝑘 ≡ 3(mod6). 

We prove that 
1

sin 
𝜋

2𝑥

>
𝑥

3
√
10

3
 for all 𝑥 ≥ 9. 

Put 𝑡 =
𝜋

2𝑥
. Then 

𝑥

3
√
10

3
=

𝜋

6𝑡
√
10

3
=

𝛼

𝑡
, where 𝛼 =

𝜋

6
√
10

3
≈ 0.942. Now we need to show 

1

sin 𝑡
>

𝛼

𝑡
 for 

all 𝑡 ≤
𝜋

18
= 𝛾, where 𝛾 ≈ 0.174. Since sin 𝑡 < 𝑡 for 

all 𝑡 > 0, we have, 𝑡 > sin 𝑡 > 𝛼sin 𝑡 for all 𝑡 > 0 

as 0 < 𝛼 < 1. Thus, we have, 𝐸𝑊(𝐶𝑘/3,2) < 𝐸(𝐶𝑘), 

completing the proof of the theorem. 
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Theorem 2.2: Suppose 𝑘 ≡ 4(mod6) and 𝑃𝑘+2
3
,2

 be 

the semigraph with 𝑘 vertices having 
𝑘−1

3
 number of 

edges each of cardinality 4 as given below: 

 

 

Then 𝐸𝑊 (𝑃𝑘+2
3
,2
) < 𝐸(𝑃𝑘). 

 

Proof: Using Theorem. 3.7 of [5], it is enough to show 

that 𝐸(𝑃𝑘) > √−2ℎ2𝑘 as √−2ℎ2𝑘 is an upper bound 

for 𝐸𝑊 (𝑃𝑘+2
3
,2
), where −ℎ2 is the coefficient of 𝜂𝑘−2 

in the 𝑊-characteristic polynomial of 𝑃𝑘+2
3
,2

 given by 

−ℎ2 = ∑  𝐸∈𝑋
|𝐸|2(|𝐸|+1)

12(|𝐸|−1)
. Since 𝑘 is even, we have, 

𝐸(𝑃𝑘) =
2

sin 
𝜋

2(𝑘+1)

− 2. Thus, it is enough to show that 

2

sin 
𝜋

2(𝑘+1)

− 2 > √−2ℎ2𝑘. Now, the semigraph 𝑃𝑘+2
3
,2

 

has 
𝑘−1

3
 number of edges each of cardinality 4 . If we 

put 𝑘 = 6𝑙 + 4, then 
𝑘−1

3
= 2𝑙 + 1 and so, we have, 

−ℎ2 = (2𝑙 + 1) ×
16 × 5

12 × 3
= (2𝑙 + 1)

20

9

= (6𝑙 + 3)
20

27
 

and so 

√−2ℎ2𝑘 = √(6𝑙 + 3) ×
40

27
× (6𝑙 + 4)

< (6𝑙 + 4)√
40

27
 

since 6𝑙 + 3 < 6𝑙 + 4. 

If we show that 

𝐸(𝑃𝑘) =
2

sin 
𝜋

2(6𝑙 + 5)

− 2 > (6𝑙 + 4)√
40

27
 

for all 𝑙 ≥ 2, then this would mean that 𝐸(𝑃𝑘) >

√−2ℎ2𝑘 for all 𝑘 with 𝑘 ≥ 16 and 𝑘 ≡ 4(mod6). 

We show that 
1

sin 
𝜋

2(6𝑥+5)

> 1 + (6𝑥 + 4)√
10

27
 for all 

𝑥 ≥ 2. Put 𝑡 =
𝜋

2(6𝑥+5)
. Then, we have, 

1 + (6𝑥 + 4)√
10

27
  = 1 + (

𝜋

2𝑡
− 1)√

10

27

  = (√
10

27
×
𝜋

2
)
1

𝑡
+ (1 − √

10

27
)

  =
𝛼

𝑡
+ 𝛽,  say, 

 

where 𝛼 =
𝜋

2
√
10

27
≈ 0.955 and 𝛽 = 1 − √

10

27
≈

0.3915. Also as 𝑥 ≥ 2, we have, 𝑡 =
𝜋

2(6𝑥+5)
≤

𝜋

34
=

𝛾, say, where 𝛾 ≈ 0.09235. 

Now, 𝑡 > sin 𝑡 for all 𝑡 > 0. Hence for 0 < 𝑡 ≤ 𝛾,  

we have, 

1

sin 𝑡
>
1

𝑡
=
𝛼

𝑡
+
1 − 𝛼

𝑡
, 

where 

1 − 𝛼

𝑡
≥
1 − 𝛼

𝛾
> 𝛽, 

as  
1−𝛼

𝛾
≈ 0.484.  Thus, 

1

sin 𝑡
>
𝛼

𝑡
+ 𝛽 for 𝑡 ∈ (0, 𝛾] 

Thus 𝐸(𝑃𝑘) > 𝐸𝑊 (𝑃𝑘+2
3
,2
) for all positive integers 

𝑘 ≥ 16 such that 𝑘 ≡ 4(mod6). 

For 𝑘 = 4, 10 (that is when 𝑙 = 0, 1 ), it can easily be 

checked to show the validity of the theorem and so 

this proves the theorem. 

 

REFERENCE 

 

[1] D. M. Cvetkovi´c, M. Doob and H. Sachs, Spectra 

of Graphs, Academic Press, New York, 1980. 

[2] I. Gutman, X. Li and Y. Shi, Graph Energy, New 

York: Springer, 2012. 

[3] F. Harary, Graph Theory, Addison-Wesley 

Publishing Company, New York, 1969 

[4] Y.Hou, Unicyclic graphs with minimal energy, 

Journal of Mathematical Chemistry, Vol. 29, No. 

3, (2001), 163-168. 

[5] H. N. Ramaswamy and N. Ravikumar, Weighted 

Adjacency Matrix of a Semigraph and its Spectral 

Analysis, Advanced Studies in Contemporary 

Mathematics, 27 (2017), No. 1, pp. 7 – 30. 

[6] H.N. Ramaswamy and K.S. Shambhulingaiah, 

Adjacency matrices of semigraphs and their 

spectral analysis. Adv. Stud. Contemp. Math., 24 

(2014), No. 3, pp. 349-368. 



© April 2019| IJIRT | Volume 5 Issue 11 | ISSN: 2349-6002 
 

IJIRT 171623 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 780 

[7] E. Sampathkumar. Semigraphs and their 

applications, Technical Report [DST/MS/022/94] 

Department of Science and Technology, Govt of 

India, August; 1999. 

[8] E. Sampathkumar, L. Pushpalatha, Matrix 

representation of Semigraphs, Adv. Stud. 

Contemp. Math., 14 (2007), No.1, pp. 103-109. 


