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Abstract— In the present paper a new kind of Numerical 

technique is used for computing exact solution to a linear 

partial differential equation by method of Adomian 

decomposition and Variation iteration methods are 

described and used to give exact solution for some well-

known nonlinear problem. In this method the problems are 

initially approximated with possible unknowns. Then a 

correction functional is constructed by a general Lagrange 

multiplier, which can be identified optimally via the 

variational theory. Finally, we compare two methods with 

their exact solution 
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I. INTRODUCTION 

 

In this paper we will study the Goursat problem [7] 

that arises in linear and non-linear partial differential 

equations with mixed derivatives. Several numerical 

methods [6] such as Range - Kutta method, finite 

difference method, finite elements method and 

geometric means averaging of the functional values of 

𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦) have been used to approach the 

problem. However, the linear and non linear Goursat 

models will be approached more effectively and 

rapidly by using the Adomian decomposition method. 

The linear examples will be handled by the Variational 

iteration method as well. The Goursat problem in its 

standard form is given by 

 

𝑢𝑥𝑦 = 𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦), 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤

𝑏, 𝑢(𝑥, 0) = 𝑔(𝑥), 𝑢(0, 𝑦) = ℎ(𝑦), 𝑔(0) = ℎ(0) =

𝑢(0,0).      (1.1) 

 

𝐿𝑥𝐿𝑦𝑢 = 𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)   (1.2) 

where 𝐿𝑥 =
𝛿

𝛿𝑥
,       𝐿𝑦 =

𝛿

𝛿𝑦
   

The inverse operators 𝐿𝑥
−1 and 𝐿𝑦

−1 can be defined as 

𝐿𝑥
−1(⋅) = ∫  

𝑥

0
(⋅)𝑑𝑥, 𝐿𝑦

−1(⋅) = ∫  
𝑦

0
(⋅)𝑑𝑦,  

Because the Goursat problem (1.1) involves two 

distinct differential  operators 𝐿𝑥 and 𝐿𝑦 two inverse 

integral operator𝐿𝑥
−1 and 𝐿𝑦

−1 will be used. 

 

Applying 𝐿𝑦
−1 to both sides of (1.2) gives 

𝐿𝑥[𝐿𝑦
−1𝐿𝑦𝑢(𝑥, 𝑦)] = 𝐿𝑦

−1𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)  

It then follows that 

𝐿𝑥[𝑢(𝑥, 𝑦) − 𝑢(𝑥, 0)] = 𝐿𝑦
−1𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦),  

or equivalently 

𝐿𝑥𝑢(𝑥, 𝑦) = 𝐿𝑥𝑢(𝑥, 0) + 𝐿𝑦
−1𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦) (1.3) 

 

Operating with 𝐿𝑥
−1 on (1.3) yields 

𝐿𝑥
−1𝐿𝑥𝑢(𝑥, 𝑦) = 𝐿𝑥

−1𝐿𝑥𝑢(𝑥, 0) +

𝐿𝑥
−1𝐿𝑦

−1𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦),  

This gives,  

𝑢(𝑥, 𝑦) = 𝑢(𝑥, 0) + 𝑢(0, 𝑦) − 𝑢(0,0) +

𝐿𝑥
−1𝐿𝑦

−1𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦),  

or equivalently 

𝑢(𝑥, 𝑦) = 𝑔(𝑥) + ℎ(𝑦) − 𝑔(0) +

𝐿𝑥
−1𝐿𝑦

−1𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦) (1.4) 

 

Obtained upon using the conditions given in (1.1). 

Substituting 𝑢(𝑥, 𝑦) = ∑  ∞
𝑛=0 𝑢𝑛(𝑥, 𝑦)  into (1.4) leads 

to  

∑  ∞
𝑛=0 𝑢𝑛(𝑥, 𝑦) = 𝑔(𝑥) + ℎ(𝑦) − 𝑔(0) +

𝐿𝑥
−1𝐿𝑦

−1𝑓(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)  

Adomian's method admits the use of the recursive 

relation 

𝑢0(𝑥, 𝑦) = 𝜂(𝑥, 𝑦) and (𝑥, 𝑦) =

𝐿𝑥
−1𝐿𝑦

−1 𝜎(𝑢, 𝑢𝑥, 𝑢𝑦), 𝑘 ≥ 0   (1.5) 

where, 

 

𝜂(𝑥, 𝑦) =

{
𝑔(𝑥) + ℎ(𝑦) − 𝑔(0), 𝑓 = 𝜎(𝑢, 𝑢𝑥, 𝑢𝑦)

𝑔(𝑥) + ℎ(𝑦) − 𝑔(0) + 𝐿𝑥
−1𝐿𝑦

−1𝜏(𝑥, 𝑦), 𝑓 = 𝜏(𝑥, 𝑦) + 𝜎(𝑢, 𝑢𝑥, 𝑢𝑦)
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In view of (1.5) the solution in a series form follows 

immediately. The resulting series solution may 

provide the exact solution. Otherwise, the n-term 

approximation Φ𝑛 can be used for numerical purposes. 

It can be shown that the difference between the exact 

solution and the n-terms approximation decreases 

monotonically for all values of x and y as additional 

components are evaluated. In the following one linear 

Goursat model will be discussed for illustrative 

purposes. 

 

Consider the linear Goursat problem 

 

𝑢𝑥𝑦 = −𝑥 + 𝑢    (1.6) 

 

Subject to the conditions 

𝑢(𝑥, 0) = 𝑥 + 𝑒𝑥, 𝑢(0, 𝑦) = 𝑒𝑦 , 𝑢(0,0) = 0. 

 

II. ADOMIAN DECOMPOSITION METHOD 

 

For solving partial differential equation [5, 7], 

solutions are usually obtained as exact solutions 

defined in closed form expressions, or as series 

solutions normally obtained from concrete problems. 

To apply the Adomian decomposition method [1] for 

such non-linear partial differential equation [2, 7] The 

Decomposition method, using eq.(1.4), we find 

 

𝑢(𝑥, 𝑦) = 𝑥 + 𝑒𝑥 + 𝑒𝑦 − 1 −
1

2
𝑥2𝑦 + 𝐿𝑥

−1𝐿𝑦
−1𝑢(𝑥, 𝑦) 

   (2.1) 

 

and by using the series representation for 𝑢(𝑥, 𝑦) into 

eq.(1.6) gives  

∑  ∞
𝑛=0  𝑢𝑛(𝑥, 𝑦) = 𝑥 + 𝑒𝑥 + 𝑒𝑦 − 1 −

1

2
𝑥2𝑦 +

𝐿𝑥
−1𝐿𝑦

−1 ∑  ∞
𝑛=0  𝑢(𝑥, 𝑦)    (2.2) 

 

The recursive relation 

𝑢0(𝑥, 𝑦) = 𝑥 + 𝑒𝑥 + 𝑒𝑦 − 1 −
1

2
𝑥2𝑦 𝑢𝑘+1(𝑥, 𝑦) =

𝐿𝑥
−1𝐿𝑦

−1𝑢𝑘(𝑥, 𝑦)         𝑘 ≥ 0   (2.3) 

 

follows immediately consequently the first three 

components of the solution 𝑢(𝑥, 𝑦) are given by 

𝑢0(𝑥, 𝑦)  = 𝑥 + 𝑒𝑥 + 𝑒𝑦 − 1 −
1

2
𝑥2𝑦  

𝑢1(𝑥, 𝑦) = 𝐿𝑥
−1𝐿𝑦

−1𝑢0(𝑥, 𝑦)  

=
1

2
𝑥2𝑦 + 𝑦(𝑒𝑥 − 1) + 𝑥(𝑒𝑦 − 1) − 𝑥𝑦 −

1

12
𝑥3𝑦2  

𝑢2(𝑥, 𝑦)  = 𝐿𝑥
−1𝐿𝑦

−1𝑢1(𝑥, 𝑦)  

=
1

12
𝑥3𝑦2 +

1

2
𝑦2(𝑒𝑥 − 1 − 𝑥) +

1

2
𝑥2(𝑒𝑦 − 1 − 𝑦) −

1

4
𝑥2𝑦2 −

1

144
𝑥3𝑦4  

 

This gives, 

𝑢(𝑥, 𝑦) = 𝑥 + 𝑒𝑥 (1 + 𝑦 +
1

2!
𝑦2) +

1

3!
𝑦3 + ⋯ ) +

𝑒𝑦 (1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 + ⋯ )  

− (1 + 𝑥 + 𝑦 + 𝑥𝑦 +
1

2!
𝑥2 +

1

2!
𝑦2 +

1

3!
𝑥3 +

1

3!
𝑦3 +

1

2!
𝑥2𝑦 + ⋯ )  

or equivalently 

𝑢(𝑥, 𝑦)  = 𝑥 + 𝑒𝑥 (1 + 𝑦 +
1

2!
𝑦2 +

1

3!
𝑦3 + ⋯ ) +

𝑒𝑦 (1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 + ⋯ ) − (1 + 𝑥 +

1

2!
𝑥2 +

1

3!
𝑥3 + ⋯ ) (1 + 𝑦 +

1

2!
𝑦2) +

1

3!
𝑦3 + ⋯ )   

Accordingly, the solution in a closed form is given by 

𝑢(𝑥, 𝑦) = 𝑥 + 𝑒𝑥+𝑦  

Obtained upon using the Taylor’s expansion for 𝑒𝑥 

and 𝑒𝑦. 

 

III. VARIATIONAL ITERATION METHOD 

 

The Variational iteration method (VIM)[3, 4, 5] gives 

rapidly convergent successive approximations of the 

exact solution if an exact solution exists. The obtained 

approximations by this method are of high accuracy 

level even if few iteration used. As introduced before 

the method employs the correction functional. 

𝑢𝑛+1(𝑥, 𝑦) = 𝑢𝑛(𝑥, 𝑦) + ∫  
𝑦

0
 𝜆(𝜉) (

𝛿2𝑢𝑛(𝑥,𝜉)

𝛿𝑥𝛿𝜉
−

𝑢𝑛̃(𝑥, 𝜉) + 𝑥) 𝑑𝜉 (3.1) 

 

The stationary condition, 1 + 𝜆 = 0, it follows that 

𝜆′ = 0, which gives 𝜆 = −1. Substituting the 

Lagranges multiplier 𝜆 = −1, into the correction 

functional gives the iteration formula 

 

𝑢𝑛+1(𝑥, 𝑦) = 𝑢𝑛(𝑥, 𝑦) − ∫  
𝑦

0
  (

𝛿2𝑢𝑛(𝑥,𝜉)

𝛿𝑥𝛿𝜉
− 𝑢𝑛(𝑥, 𝜉) +

𝑥) 𝑑𝜉,     𝑛 ≥ 0   (3.2) 

Selecting 𝑢0(𝑥, 𝑦) = 𝑥 + 𝐴𝑒𝑥 + 𝐵𝑒𝑦 gives the 

following successive approximations 

𝑢0(𝑥, 𝑦) = 𝑥 + 𝐴𝑒𝑥 + 𝐵𝑒𝑦 

𝑢1(𝑥, 𝑦)  = 𝑥 + 𝐴𝑒𝑥(1 + 𝑦) + 2𝐵𝑒𝑦 − 𝐵  

𝑢2(𝑥, 𝑦) = 𝑥 + 𝐴𝑒𝑥 (1 + 𝑦 +
1

2!
𝑦2) + 4𝐵𝑒𝑦 − 3𝐵 −

𝐵𝑦  
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𝑢3(𝑥, 𝑦)  = 𝑥 + 𝐴𝑒𝑥 (1 + 𝑦 +
1

2!
𝑦2 +

1

3!
𝑦3) +

8𝐵𝑒𝑦 − 7𝐵 − 4𝐵𝑦 −
1

2
𝐵𝑦2  

𝑢𝑛(𝑥, 𝑦) = 𝑥 + 𝐴𝑒𝑥 (1 + 𝑦 +
1

2!
𝑦2 +

1

3!
𝑦3 + ⋯ ) +

(8𝐵𝑒𝑦 − 7𝐵 − 4𝐵𝑦 −
1

2
𝐵𝑦2 + ⋯ )  

Using the boundary conditions 𝑢(0,0) = 1 and 

𝑢(𝑥, 𝑜) = 𝑥 + +𝑒𝑥 gives the system, 

𝐴 + 𝐵 = 1 

𝑥 + 𝐴𝑒𝑥 + 𝐵 = 𝑥 + 𝑒𝑥  

Solving this system gives 𝐴 = 1, 𝐵 = 0. Substituting 

these values into 𝑢𝑛(𝑥, 𝑦) gives the exact solution 

𝑢(𝑥, 𝑦) = 𝑥 + 𝑒𝑥+𝑦  

obtained upon the using the Taylor's expansion for 𝑒𝑦. 

 

The variational iteration method [3,4,5] will be used 

to handle non-linear problems in a manner similar to 

that used before for linear problems. The method 

facilitates the computational work for non-linear 

problems compared to Adomian method. Unlike 

Adomian decomposition method, the variational 

iteration method does not require specific treatment 

for non-linear operators. There is no need for Adomian 

polynomials that require a huge size of computational 

work. Moreover, the variational iteration method does 

not require specific assumption or restrictive 

conditions as required by other method such as 

perturbation techniques. The effectiveness and the 

efficiency of the method can be confirmed by 

discussing the following non-linear ordinary 

differential equations. 

 

CONCLUSION 

 

In this paper we have workout exact solution for 

Goursat problem of linear partial differential equation 

by using Adomian decomposition method and 

variational iteration method with some numerical 

techniques. This result shows that 

(1) A correctional functional can be easily constructed 

by a general Lagrange multiplier, and the multiplier 

can be optimally identified by variational theory. 

(2) The initial approximation can be freely selected 

with unknown constants, which can be determined via 

various methods. 

(3) Comparison with Adomian decomposition method 

reveals that the approximations obtained by the 

proposed method converge to its exact solution faster 

than those of Adomian's. 
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