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Abstract—The increasing global demand for food 

necessitates enhanced crop productivity, which is 

critically hindered by plant diseases and pest 

infestations. Conventional detection methods are 

predominantly manual, time-consuming, and ineffective 

for large-scale agricultural monitoring. This paper 

presents an integrated, AI-based approach for 

automated detection of crop diseases and pests using 

deep learning techniques. For disease identification, a 

custom Convolutional Neural Network (CNN) is trained 

on the disease detection dataset to classify potato leaf 

conditions into three categories: early blight, late blight, 

and healthy. The model incorporates data augmentation 

and image preprocessing to enhance generalization, 

achieving a test accuracy of 96.3%. 

For pest detection, a transfer learning framework 

utilizing the MobileNet architecture is employed. The 

model is fine-tuned on a dataset comprising nine pest 

classes and is optimized using advanced image 

augmentation techniques. The resulting classifier 

demonstrates a test accuracy of 96.22%, indicating high 

reliability and scalability in field conditions. The 

proposed dual-model framework offers a non-invasive, 

high-throughput solution for real-time monitoring of 

crop health. This work contributes to the development 

of intelligent precision agriculture systems by 

supporting early detection, timely intervention, and 

informed decision-making. 

 

Index Terms—Convolutional Neural Network (CNN), 

MobileNet, crop disease detection, pest classification, 

deep learning, image processing, smart farming, 

precision agriculture. 

 

I. INTRODUCTION 

 

With increasing food insecurity and the challenges 

posed by climate change, the early detection of 

diseases and pests in crops is essential for ensuring 

sustainable agricultural practices. Among staple 

crops, potatoes are highly vulnerable to various 

fungal diseases such as early blight and late blight, 

which significantly impact both yield and quality. 

Traditionally, plant disease identification has relied 

on visual inspection by farmers or agricultural 

experts—a method that is not only time-consuming 

and labor-intensive but also subjective and prone to 

errors, especially in large-scale farming 

environments. 

The emergence of artificial intelligence (AI) and 

computer vision has revolutionized agricultural 

diagnostics. In particular, Convolutional Neural 

Networks (CNNs) have demonstrated remarkable 

success in plant disease classification using leaf 

images [1], [2]. These deep learning models 

automatically extract hierarchical features, making 

them more effective than traditional machine learning 

techniques that rely heavily on handcrafted features. 

In this work, a CNN-based architecture is developed 

using the TensorFlow and Keras frameworks to 

classify potato leaf conditions into three categories: 

early blight, late blight, and healthy. The model is 

trained on the widely used dataset, with image 

preprocessing and augmentation applied to improve 

robustness and generalization. 

AI-driven systems enhance precision agriculture by 

enabling high-throughput, non-invasive monitoring 

of crop health. Prior studies have explored various 

techniques, including hyperspectral imaging [5], edge 

detection [7], and deep feature visualization [6], for 

disease detection in plants. The adoption of CNN-

based methods has shown substantial improvements 

in accuracy, generalizability, and scalability [4], [8]. 

However, diseases are not the only biotic threat to 

crops—pest infestations also contribute significantly 

to agricultural losses worldwide. Like disease 

detection, traditional pest identification methods 

require expertise and manual effort, making them 

inefficient for real-time large-scale monitoring. To 

overcome these limitations, researchers have turned 

to AI-based pest detection systems that leverage deep 

learning for automatic classification of insect pests 

[9], [10]. 

In this study, pest detection is implemented using 

MobileNet, a lightweight CNN model optimized for 

low-latency and resource-constrained environments 

[11]. The model is fine-tuned on a dataset containing 

nine pest categories and incorporates data 

augmentation techniques to address variability in 

image backgrounds, lighting, and pest morphology. 

Similar models have proven effective in real-time 

settings for crops such as tomatoes and rice [12], 

[13]. Our MobileNet-based pest detection model 

achieves a test accuracy of 96.22%, demonstrating its 

potential for integration into smart farming solutions. 
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By combining a custom CNN for disease detection 

with a MobileNet-based pest classifier, this work 

presents a unified AI-driven system for monitoring 

plant health. The approach supports real-time 

decision-making, reduces reliance on expert manual 

inspections, and paves the way for scalable, 

intelligent agricultural systems. 
 

II. LITERATURE SURVEY 

 

Several studies have demonstrated the effectiveness 

of deep learning models in agricultural disease 

detection. Mohanty et al. [1] pioneered CNN-based 

plant disease classification using the disease 

detection dataset and achieved impressive accuracy, 

setting a foundational benchmark in the field. 

Ferentinos [2] later extended this work by evaluating 

multiple deep learning architectures across 58 disease 

classes, achieving an overall classification accuracy 

exceeding 99%. 

To support such research, Hughes and Salathé [3] 

released the PlantVillage dataset, comprising high-

resolution images of healthy and diseased plant 

leaves under controlled lighting conditions. This 

dataset has become a standard for benchmarking 

plant disease classification models. 

Kamilaris and Prenafeta-Boldú [4] conducted a 

comprehensive survey highlighting the dominance of 

CNNs in agricultural applications due to their 

hierarchical feature extraction capabilities. Their 

work underscores the importance of integrating deep 

learning with real-time agricultural monitoring 

systems. 

Earlier approaches such as that by Rumpf et al. [5] 

used Support Vector Machines (SVMs) with 

hyperspectral imaging for early detection, which 

offered precision but lacked the scalability and 

automation capabilities of CNNs. Brahimi et al. [6] 

introduced interpretable deep learning methods for 

tomato leaf diseases and visualized CNN decision 

layers to improve model transparency. 

Mohan et al. [7] reviewed various image processing 

techniques and concluded that modern deep learning 

methods outperform classical approaches in accuracy 

and adaptability. More recently, Abbas et al. [8] 

applied VGG16-based transfer learning for plant 

disease prediction and demonstrated improved 

generalization on real-world image data. 

In the domain of pest detection, researchers have 

similarly applied CNNs for automated insect 

classification. Chen et al. [9] explored deep 

convolutional networks for insect pest classification 

and reported high accuracy across several classes. 

Fuentes et al. [10] developed a real-time deep 

learning-based system capable of detecting tomato 

plant diseases and pests simultaneously using robust 

object detection algorithms. Howard et al. [11] 

introduced the MobileNet architecture, which has 

since been widely adopted for lightweight 

deployment scenarios, such as mobile pest detection 

systems. 

Further advancements include the work by Liu et al. 

[12], who implemented a deep learning pipeline for 

real-time pest recognition in agricultural fields, and 

Wu et al. [13], who applied data augmentation and 

CNNs for insect recognition with high classification 

accuracy. 

The present study builds upon these foundations by 

proposing a dual-framework system: a custom CNN 

tailored specifically for potato leaf disease 

classification and a MobileNet-based pest detection 

model. Both models are trained on respective 

benchmark datasets and optimized for edge 

computing environments, enabling real-time 

deployment in precision agriculture scenarios. 

 

III. . DATASET DESCRIPTION 

 

The proposed AI-based system for pest and disease 

detection in crops utilizes two distinct image datasets: 

the disease detection dataset for disease classification 

and a custom pest image dataset comprising nine pest 

categories. Both datasets were organized into 

training, validation, and test splits to ensure unbiased 

model evaluation. 

A.  Disease Detection Dataset  

The dataset is a widely used public repository 

consisting of over 50,000 labeled images of healthy 

and diseased plant leaves across various species. For 

this study, a subset of the dataset was used 

specifically for potato crop diseases, including three 

classes: 

 
Fig. 1. Potato___Early_blight, 

Potato___Late_blight, Potato___Healthy 

 
The images were captured under controlled lighting 

conditions with a consistent white background to 

reduce noise and enhance the extraction of disease-

specific features. The dataset was split into: 

1. Training set: 900 images (300 per class) 

2. Validation set: 300 images (100 per class) 

3. Test set: 300 images (100 per class) 

Fig. 1 displays representative images for each class. 
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B.  Pest Detection Dataset 

The pest detection dataset was organized into training 

and testing directories, containing images of nine pest 

categories, such as: 

4. Aphids, Armyworms, beetle, grasshopper, mites, 

mosquito, sawfly, stem_borer, bollworm. 

 
Fig. 2. Pests 

 

Fig. 2. images were collected from field 

environments, exhibiting varying lighting, scale, and 

occlusions to simulate real-world conditions. The 

total number of samples includes: 

1. Training set: 2,565 images 

2. Validation set: 135 images 

3. Test set: 450 images 

To enhance generalization, the dataset was 

augmented using techniques like random flipping, 

zooming, rotation, shear transformation, and 

normalization. All images were resized to 224×224 

pixels before being fed into the model. 

This dual-dataset strategy provides a comprehensive 

input space that enables the AI model to learn both 

disease patterns on leaves and distinguish between 

diverse pest species under field conditions, 

significantly improving robustness and applicability 

in real-time agriculture. 

 

IV. CNN MODEL ARCHITECTURE 

 

A.  Disease Detection  

A custom CNN architecture was implemented using 

the Keras Sequential API tailored for classifying 

three categories of potato leaf conditions: healthy, 

early blight, and late blight. The model architecture 

consists of: 

• Input preprocessing (Resizing to 255x255 

pixels and rescaling pixel values between 0 and 

1). 

• Three convolutional layers with 32, 64, and 

64 filters respectively and ReLU activation. 

• MaxPooling layers after each convolution 

layer to reduce spatial dimensions. 

• Flattening layer to convert 2D feature maps 

into 1D feature vectors. 

• Dense layer with 64 units and ReLU 

activation to learn higher-level features. 

• Output Dense layer with 3 units (for 3 

classes) and softmax activation. 

The model was compiled with the Adam optimizer 

and Sparse Categorical Cross-Entropy loss function 

due to integer-encoded labels. It achieved a test 

accuracy of 96.3% on the disease detection dataset. 

 

B.  Pest Detection -MobileNet-based Transfer 

Learning 

For pest detection, a pre-trained MobileNet model 

was used as the base architecture. MobileNet is 

lightweight, making it suitable for edge deployment. 

The architecture was extended by stacking custom 

layers on top of the base model: 

• Base model: MobileNet with 

include_top=False, pre-trained on ImageNet, 

frozen during training to retain learned features. 

• MaxPooling2D layer to further downsample 

feature maps. 

• Flatten layer to transform 2D output into 1D. 

• Dense layers with increasing complexity: 

128 → 512 → 1024 → 512 → 128, each 

followed by Batch Normalization and ReLU 

activation. 

• Output Dense layer with 9 units 

(representing 9 pest categories) and softmax 

activation. 

The pest classification model was trained with the 

Adam optimizer (learning rate=0.001) and 

categorical cross-entropy loss. It achieved a final 

validation accuracy of 81.4% and a test accuracy of 

96.2%, confirming strong generalization on unseen 

data. 

A learning rate scheduler (ReduceLROnPlateau) was 

used to reduce the learning rate dynamically during 

training, and EarlyStopping was employed to prevent 

overfitting. 

 

Task Architecture Layers 

Disease 

Detection 
Custom CNN 

Conv2D → 

MaxPooling → 

Conv2D → 

MaxPooling → 

Conv2D → 

MaxPooling → 

Flatten → Dense(64) 

→ Dense(3, softmax) 
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Pest 

Detection 

MobileNet + 

Custom 

Layers 

MobileNet (frozen) → 

MaxPooling → 

Flatten → Dense(128 

→ 512 → 1024 → 

512 → 128) [Each 

with BN + ReLU] → 

Dense(9, softmax) 

Table I. CNN Architectures 

 

V. TRAINING AND EVALUATION 

 

The complete system comprises two separate models: 

a custom CNN for disease classification and a 

transfer learning-based MobileNet model for pest 

prediction. 

A. Disease Detection Model 

The disease detection CNN model was trained over 

20 epochs with a batch size of 32. The model used 

the Adam optimizer with a learning rate of 0.001 and 

Sparse Categorical Crossentropy as the loss function. 

Images were preprocessed using resizing, 

normalization, and data augmentation strategies 

(random flips, rotation, and zoom). The dataset was 

divided into training, validation, and testing splits 

with 900, 300, and 300 images respectively across 

three classes: Potato___Healthy, 

Potato___Early_blight, and Potato___Late_blight. 

The data pipeline employed TensorFlow’s 

image_dataset_from_directory and AUTOTUNE for 

prefetching, thereby reducing the input latency during 

model training. 

B. Pest Detection Model 

The pest prediction model was based on MobileNet, a 

lightweight and efficient convolutional network pre-

trained on ImageNet, and fine-tuned for this task. The 

top layers of MobileNet were frozen, and additional 

layers were added including MaxPooling2D, several 

Dense layers with Batch Normalization, and a 

softmax output layer with 9 units corresponding to 

pest classes such as aphids, bollworm, and mites. 

The model was trained for 40 epochs, also using 

Adam optimizer and Categorical Crossentropy loss. 

Data augmentation techniques like horizontal/vertical 

flips, rotation, zoom, and contrast adjustment were 

applied using ImageDataGenerator. A validation split 

of 5% was used from the training set, while testing 

was performed on a hold-out dataset comprising 450 

images. 

Callbacks such as EarlyStopping and 

ReduceLROnPlateau were used to monitor validation 

accuracy and dynamically adjust the learning rate, 

ensuring optimal convergence. 

 

 

 

VI. EXPERIMENTAL RESULTS 

 

This section presents the experimental evaluation of 

the proposed AI-based system for both disease and 

pest detection in crops. Two models were developed: 

a custom CNN for detecting potato leaf diseases and 

a MobileNet-based model for pest detection. Each 

model was evaluated on unseen test datasets using 

metrics such as accuracy, precision, recall, F1-score, 

and confusion matrices. 

A.  Disease Detection Model 

The custom CNN model was trained for 20 epochs on 

the PlantVillage Potato dataset. Its performance was 

evaluated on a test set comprising three classes: 

Potato___Early_blight, Potato___Late_blight, and 

Potato___Healthy. 

1) Confusion Matrix 

The confusion matrix for disease detection, illustrated 

in Fig. 3, demonstrates the model's classification 

ability across the three categories. The diagonal 

elements indicate the number of correct predictions, 

whereas off-diagonal elements represent 

misclassifications. 

 

 
Fig. 3. Confusion Matrix for Potato Disease 

Detection. 

 

2) Classification Report 

The classification report, summarized in Table II, 

presents precision, recall, F1-score, and support for 

each disease class. 

 

Class Precision Recall 
F1-

Score 
Support 

Potato__Early_blight 0.95 1.00 0.98 100 

Potato__Late_blight 0.97 0.92 0.94 100 

Potato__Healthy 0.97 0.97 0.97 100 

Table II. Classification Report for Disease Detection 

Model 
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The model achieved high performance with only 

minor confusion between Potato___Late_blight and 

Potato___Healthy classes, demonstrating its potential 

for real-world agricultural deployment. 

B. Pest Detection Model 

The pest detection model was developed using 

MobileNet as the feature extractor with fine-tuning 

on a pest dataset comprising nine categories: aphids, 

armyworm, beetle, bollworm, grasshopper, mites, 

mosquito, sawfly, and stem borer. 

1) Confusion Matrix 

The confusion matrix for pest detection is depicted in 

Fig. 4. The matrix shows high accuracy in correctly 

classifying most pest categories with minimal inter-

class confusion. 

 

 
Fig. 4. Confusion Matrix for Pest Detection Model. 

 

2) Classification Report 

The classification report for pest detection is 

provided in Table III. 

 

Class Precision Recall 
F1-

Score 

Supp

ort 

Aphids 0.9

8 
 

0.9

6 
 

0.97 52 

Armyworm 0.91 1.00 0.95 51 

Beetle 0.96 1.00 0.98 50 

Bollworm 0.98 0.89 0.93 47 

Grasshopper 1.00 1.00 1.00 52 

Mites 1.00 0.96 0.98 50 

Mosquito 0.96 1.00 0.98 50 

Sawfly 1.00 0.90 0.95 48 

Stem Borer 0.92 0.98 0.95 50 

Table III. Classification Report for Pest Detection 

Model. 

 

The pest detection model achieved outstanding 

classification performance, particularly for classes 

such as grasshopper, mites, and mosquito. Slight 

misclassification was observed between bollworm 

and other categories, suggesting areas for further 

model refinement. 

 

VII. CONCLUSION 

 

In this research, we have explored the potential of 

artificial intelligence in the detection of diseases and 

pests in potato crops. We utilized two advanced deep 

learning architectures: a custom Convolutional 

Neural Network (CNN) for potato disease detection 

and MobileNet for pest prediction. Both models were 

trained on distinct datasets, ensuring a comprehensive 

approach to crop health monitoring. 

The CNN model demonstrated high accuracy in 

identifying various potato diseases, outperforming 

traditional image classification techniques. 

MobileNet, being a lightweight model, showed 

excellent performance in pest detection, even with 

limited computational resources, making it suitable 

for deployment in real-time monitoring systems. 

The integration of both models into a unified system 

has the potential to revolutionize precision 

agriculture, offering farmers an automated, efficient 

tool for early detection and intervention. By detecting 

diseases and pests at an early stage, farmers can 

significantly reduce crop loss, optimize the use of 

pesticides, and improve overall crop yield. 

Future work will focus on enhancing model accuracy 

by incorporating larger and more diverse datasets, 

exploring model optimization techniques, and 

deploying the system for real-world applications. 

Additionally, combining this system with IoT devices 

for real-time monitoring and data collection can 

further elevate the system’s performance and 

applicability in agriculture. 

In conclusion, AI-driven pest and disease detection 

represents a promising direction for advancing 

sustainable agricultural practices and improving crop 

health management, contributing to the food security 

and economic stability of farming communities 

worldwide. 
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