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INTRODUCTION 

The well-known Matrix generated tree structure for 

Pythagorean triples is extended to the primitive 

solutions of the Diophantine equation x2 +dy2-z2 = 0 

, where d is a positive square free integer. This paper, 

focused to study the basic structure of the solutions 

to the Diophantine equations  

x2 +d y2- z2 = 0 is determined. Since above equation 

is homogeneous, we may assume that (x, y, z) is 

primitive. Hence for d =1, all such Pythagorean 

triples form an infinite tree with root (3, 4, 5). All 

nodes descend to (3, 4 ,5) and each node appears 

exactly Once. For each d>1, we construct finite sets 

of matrices and finite sets of roots that generate all 

the solutions to x2 +dy2-z2 = 0. Given a primitive 

solution (x, y, z) of x2 +dy2 - z2 = 0, an algorithm to 

describes a path (or descent) from (x, y, z) to some 

element in the finite set of roots. 

Definition 1: Let d be a positive square-free integer 

and let M(d) be a set of non-singular matrices. A 

primitive solution (x, y, z) of (1) satisfies Fermat’s 

method of descent with respect to M(d) if there exists 

an element g of M(d) such that g-1. (x, y, z) is a 

positive integer multiple of a primitive solution                     

(x′, y′, z′) where one of the following holds: 

z - x > z′ - x′ 

z - x = z′ - x′ and z > z′ 

d ≥ 10 is even and (x, y, z) is a binary root, i.e., z - 

x = z′ - x′ and z < z′. In this case, (x′, y′, z′) is 

called the copartner of (x, y, z). 

Suppose that primitive solution (x, y, z) of (1) 

satisfies Definition 1. If the scaled (by its  gcd) output 

(x′, y′, z′) successively satisfies Definition 1, we show 

for a specific set M(d) that after a finite number of 

steps (or descents) the result is a positive integer 

times either   (1, 0, 1) or a primitive binary root. 

Moreover, we characterize all binary roots (x, y, z) 

and their copartners (x′, y′, z’) in Theorem 2, and 

prove that (x′, y′, z′) intertwines (x, y, z) indefinitely: 

(x, y, z), (x′, y′, z′), (x, y, z), (x′, y′, z′), etc. 

Definition 2:  A finite set G of matrices with integer 

entries is said to be a generating set 

for solutions to (1) whenever the following 

conditions hold: 

if g is in G and w = (x, y, z) is an integer solution to 

(1), then g.w also satisfies (1); and 

if w is a primitive solution to (1), then there exist a 

positive integer k and a primitive root r that is either 

binary or (1, 0, 1) such that 

k × w = (finite product of matrices from G). r. 

The origin of the generating sets G = G(d) is in my 

observation that if (x, y, z) satisfies (1), then so does ( 

x′ = x - u t, y′ = y - v t, z′ = z - w t ) where (u, 

v, w) is not a solution to (1) and  

t = 
2(𝑢𝑥 + 𝑑𝑣𝑦 − 𝑤𝑧)

𝑢2+𝑑𝑣2−𝑤2   or equivalently M(u, v, w, d) . (x, 

y, z) satisfies (1) where u2 +d  v2 ≠ w2       and  

 M(u, v, w, d) = 

1

𝑢2+𝑑𝑣2−𝑤2
(

−𝑢2 + 𝑑𝑣2 − 𝑤2 −2𝑑𝑢𝑣 2𝑢𝑤
−2𝑢𝑣 𝑢2 − 𝑑𝑣2 − 𝑤2 2𝑣𝑤
−2𝑢𝑤 −2𝑑𝑣𝑤 𝑢2 + 𝑣2 + 𝑤2

) 
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Definition 3: Let d be a square-free positive integer, 

and let ẟ(d) denote 1 is d is even and 2 otherwise. 

The Kth seminal matrix S (k,d) is defined by: 

S(k ,d) =
𝑑−(2𝑘−1)

ẟ(d)
 M(k-1,1,k,d) for k = 0,1,2,3,….. 

𝑑+ẟ(d+1)

2
 -1 ,..  

and S (
𝑑+ẟ(d+1)

2
, 𝑑) =  𝑀(𝑑, 1, 𝑑, 𝑑) . Then for all k 

and d, S(k, d) is an integer matrix such that if                         

(x, y, z) is a primitive solution to (1), then S(k, d) .                          

(x, y, z) is an integer solution to (1). Multiplication 

by the elementary matrices 

e(0) = (
1 0 0
0 1 0
0 0 1

) ,       e(1) = (
−1 0 0
0 1 0
0 0 1

),  

e(2) = (
1 0 0
0 −1 0
0 0 1

) ,        e(3) = (
−1 0 0
0 −1 0
0 0 1

) 

will be used to ensure that the components of 

solutions are nonnegative. In particular paths from (x, 

y, z) to a root will be in terms of products of descent 

matrices e(j) . S(k, d), whereas paths back to (x, y, z) 

will be with products of ascent matrices S(k, d) . e(j). 

Theorem 1:  

We now show that the only possibility of binary roots 

( x , y, z) defined by Definition 1 is when square-free  

d = m n ≥ 10 is even and 

 (x , y , z) = A( m, n, a, b) where b X n = a (2k) . In 

this case, the Identity                                                                               

n A( m ,n, a, b) = 2𝑎2𝐴 (
𝑑

2
, 2 , 𝑘, 1) reduces                      

A( m ,n, a, b)  to “ standard’ binary roots of the form 

𝐴 (
𝑑

2
, 2 , 𝑘, 1).Moreover , the co-partner A′ ( m ,n, a, 

b)  of  

( x , y, z) satisfies n A( m ,n, a, b) = 2𝑎2𝐴 (
𝑑

2
, 2 , 𝑘, 1) 

where b X n = a (2(
𝑑

2
− 𝑘)). Note that the multiples 

n and 2a2 will usually be ignored in the descent 

process. 

The next result of Lemma 2, will play key role in 

determining the constant k. 

Conclusion to the Proof of Theorem 1: 

Let d be a square-free positive integer , G =  G(d)* or 

G(d)** and suppose that (x , y ,z) is a primitive 

solution to (1), we will show that G satisfies  

Definition 2 of a generating set by using the proof to 

determine integers  

(𝑘𝑖 (1 ≤ 𝑘𝑖 ≤
𝑑+𝛿(𝑑+1)

2
) , 𝑗𝑖(0 ≤ 𝑗𝑖 ≤ 3))  𝑎𝑛𝑑 𝑛  

such that S(𝑘𝑖  , 𝑑). 𝑒(𝑗𝑖) (1 ≤ 𝑖 ≤ 𝑛) is in G for the 

descent 

(𝑒(𝑗1). 𝑆(𝑘1, 𝑑)). . . . . . . . . (𝑒(𝑗𝑛). 𝑆(𝑘𝑛, 𝑑)) .                        

(x , y ,z) = Kr Where r is either ( 1, 0,1) or a primitive 

binary root, and  

K=gcd ( (𝑒(𝑗1). 𝑆(𝑘1, 𝑑)). . . . . . . . . (𝑒(𝑗𝑛). 𝑆(𝑘𝑛 , 𝑑)). 

(x , y ,z)) taking inverses by Lemma 1 , we then have 

[
1

𝐾
∏ {(

𝑑−(2𝑘−1)

𝛿(𝑑)
)

2

: 𝑘𝑖 <
𝑑+𝛿(𝑑+1)

2
}].                                

(x , y ,z)  =  〈𝑆(𝑘𝑛, 𝑑). 𝑒(𝑗𝑛)〉……〈𝑆(𝑘1, 𝑑). 𝑒(𝑗1)〉. 𝑟   

Where the coefficient of ( x ,y ,z) is 1 whenever the 

product is over the empty set. Finally, since (x, y, z) 

is primitive and the right side is an integer triplet , the 

coefficient of ( x ,y ,z) must be a positive integer and 

hence G is a generating Set. 

A general interval decomposition 

Consider the following possibilities for the set M(d) 

from definition 1. 

M(d)={𝑒(𝑗), 𝑆(𝑘, 𝑑−1): 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑠 𝑖𝑛 𝐺(𝑑)}, 

M(𝑑)∗= {𝑒(𝑗), 𝑆(𝑘, 𝑑−1): 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑠 𝑖𝑛 𝐺(𝑑)∗}, 

M(𝑑)∗∗= {𝑒(𝑗), 𝑆(𝑘, 𝑑−1): 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑠 𝑖𝑛 𝐺(𝑑)∗∗}  of 

inverses of descent matrices. By Lemma 1, these sets 

contain non integer matrices, but in some sense 

𝐺(𝑑) , 𝐺(𝑑)∗, 𝐺(𝑑)∗∗ form theorem 1 will 

respectively be their generator completions. 

Let (x , y, z) be a primitive solution of (1) , By 

Proposition 1, there is a unique factorization  d = mn 

such that (x , y, z) is either A(m, n, b, a) or                             
1

2
 A( m, n, b, a) for certain positive integers a and b 

with b n > a √𝑑  and gcd (b n , a m) =1. The interval 

(a √𝑑 , ∞ ) will now be expressed as a union of 

subintervals with the property that if b n is in the kth 

subinterval, then there is an element 𝑔𝑗𝑘 of M(𝑑)∗ or 

M(𝑑)∗∗ such that 𝑔𝑗𝑘
−1.{𝑥, 𝑦, 𝑧} is a positive integer 

multiple of a primitive solution {𝑥 ,, 𝑦 ,, 𝑧 ,} as in 

Definition 1. The following elementary result plays 

an essential role in identifying the generator 𝑔𝑗𝑘. It is 

expressed in an equivalent form without the 

parameters m,n , a, b; and consequently may be used 

to determine j and k when dealing with large values 

of d that are not feasible to factoring. 
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By Proposition 1, for primitive solution ( x , y , z) of 

(1), 
𝑥+𝑧

𝑦
 = 

𝑏𝑛

𝑎
; and by the proof, gcd ( b n , a m) =1 is 

equivalent to gcd (x, z) = 1.(Actually , gcd (x, z) = 1 

follows from (x , y, z) being a primitive solution of 

(1).) 

Lemma 3: Let (x, y,z) be a primitive solution of (1) 

for some positive square-free integer d. Suppose first 

that integer k satisfies 1≤  𝑘 <
𝑑+𝛿(𝑑+1)

2
 so that 

√𝑑  
2𝑘−√𝑑−1

√𝑑−1
< 2𝑘 − 1 <  √𝑑 

2𝑘+√𝑑−1

√𝑑−1
< 𝑑. 

Then √𝑑  <
𝑥+𝑦

𝑧
≤ 𝑑;  𝑎𝑛𝑑 𝑧 − 𝑥 > 𝑧𝑗𝑘 −  𝑥𝑗𝑘 where 

𝑔𝑗𝑘
−1.(x,y,z) =(𝑒(𝑗). 𝑆(𝑘, 𝑑). (𝑥, 𝑦, 𝑧)) = (𝑥𝑗𝑘 , 𝑦𝑗𝑘 , 𝑧𝑗𝑘). 

Whenever  
𝑥+𝑧

𝑦
 is in any of the intervals in (a) –(c) 

except for a specified case of (b)(i): 

a) For j =1 and d≥ 6: (2k-1-√𝛿(𝑑), 2𝑘 −

1) 𝑤ℎ𝑒𝑟𝑒 𝑞 ≤ 𝑘 ≤ 𝑞 + 𝑟 + 1. 

Moreover, if  
𝑥+𝑧

𝑦
 = 2k-1, then 𝑧1𝑘-𝑥1𝑘 =0. 

b) For j = 3 and d≥ 6 , either  

i) (2k-1 ,2k-1+√𝛿(𝑑)) 𝑤ℎ𝑒𝑟𝑒 𝑞 ≤ 𝑘 ≤ 𝑞 +

𝑟 ; and also where k = q-1 when √𝑑 <

2𝑞 − 1 − √𝛿(𝑑) , or  

ii) ( 2k-1, √𝑑 
2𝑘+√𝑑−1

√𝑑+1
) where k > q+r. 

However, if d≥ 10 is even and 
𝑥+𝑧

𝑦
 = 2k < 

𝑑

2
 in (b)(i), 

then there exists a positive integer multiple of                         

(x , y ,z) that is a binary root. This is the only 

possibility for part (c) of Definition 1. 

       c)     For j =2, either  

         i) √𝑑 < 
𝑥+𝑧

𝑦
 < d where k = 1 and 2≤ 𝑑 ≤ 5 or 

        ii)  √𝑑 
2𝑘+√𝑑−1

√𝑑+1
<

𝑥+𝑧

𝑦
≤ 𝑑, where d≥  6 and  

                      q + r < k < 
1

2
[

√𝑑+1

√𝑑
(

𝑥+𝑧

𝑦
) + 1 −  √𝑑].  

In this case, faster convergence is obtained with the 

highest possible value of k. Moreover, if 
𝑥+𝑧

𝑦
 =d, then 

𝑧2𝑘-𝑥2𝑘 =0. 

(Note that the case d=1 is a consequence of parts (e), 

(f) , and (g) below.) 

On the other hand, let k = 
𝑑+𝛿9𝑑+1)

2
 and 

𝑥+𝑧

𝑦
> 𝑑. Then 

(𝑥𝑗𝑘 , 𝑦𝑗𝑘 , 𝑧𝑗𝑘) satisfies Definition 1 if: 

d) (j =0) d<
𝑥+𝑧

𝑦
< √𝑑(2√𝑑 − 1). In this case z -x = 

𝑧0𝑘-𝑥0𝑘 and z>𝑧0𝑘. 

Proof. Let 1≤  𝑘 <
𝑑+𝛿(𝑑+1)

2
 so that (4) is 

straightforward. Remark 4 may be helpful with the 

following computations since  

𝑒(𝑗). 𝑆(𝑘, 𝑑). 𝐴(𝑚, 𝑛, 𝑎, 𝑏) =

𝑒(𝑗). (𝑆(𝑘, 𝑑). 𝐴(𝑚, 𝑛, 𝑎, 𝑏)). 

a) Let j=1 , and for (𝑥1𝑘 , 𝑦1𝑘 , 𝑧1𝑘).: 

 

    𝑋1𝑘 > 0 ⟺ 𝑍1𝑘 + 𝑋1𝑘 >  𝑍1𝑘  −  𝑋1𝑘 

          ⟺  𝑛(𝑎𝑚 − 𝑏)2 − 𝑚(𝑏𝑛 − 𝑎(2𝑘 − 1)2 > 0 

⟺ (
𝑥+𝑧

𝑦
 − √𝑑

2𝑘−√𝑑−1

√𝑑−1
) (

𝑥+𝑧

𝑦
 − √𝑑

2𝑘−√𝑑−1

√𝑑−1
) < 0 

⟺ √𝑑
2𝑘−√𝑑−1

√𝑑−1
<

𝑥+𝑧

𝑦
<  √𝑑

2𝑘+√𝑑−1

√𝑑−1
.  

Similarly  

𝑌1𝑘 > 0 ⟺ 𝑍1𝑘 + 𝑋1𝑘 >  𝑍1𝑘  −  𝑋1𝑘 

⟺  (𝑏𝑛 − 𝑎(2𝑘 − 1))(𝑏𝑛 − 𝑎𝑑) > 0 

⟺ 
𝑥+𝑧

𝑦
<  2𝑘 − 1 or 

𝑥+𝑧

𝑦
> 𝑑. 

𝑀𝑜𝑟𝑒𝑜𝑣𝑒𝑟, 2 𝑍1𝑘  =  𝑛(𝑑 + 1) 𝑏2 − (4𝑎𝑘𝑑) 𝑏 +

 𝑎2𝑚(𝑑 + (2𝑘 − 1)2 = 0 is a quadratic equation in b 

with discriminant -4𝑎2(𝑑 − 2𝑘 + 1)2 < 0. 

Evaluating 2 𝑍1𝑘 at b = 4akd , we find that  

2𝑍1𝑘  =  16𝑎2𝑘2𝑑2(𝑛(𝑑 + 1) − 1) + 𝑎2𝑚(𝑑 +

(2𝑘 − 1)2)  >  0 , so 𝑍1𝑘 is always positive. 

It follows that the components are all positive if and 

only if 

 √𝑑
2𝑘−√𝑑−1

√𝑑−1
<

𝑥+𝑧

𝑦
<  √𝑑

2𝑘+√𝑑−1

√𝑑−1
. Next, 

𝑛[(𝑧 − 𝑥) − (𝑍1𝑘 − 𝑋1𝑘)] = n[2𝑎2𝑚 − 𝛿9𝑑 +

1)𝑚(𝑎(2𝑘 − 10) − 𝑏𝑛2] 

                = -𝛿(𝑑 + 1)𝑑[𝑏𝑛 − 𝑎(2𝑘 − 1) − √𝛿(𝑑)]    

                  [𝑏𝑛 − 𝑎(2𝑘 − 1) + √𝛿(𝑑)]; 

And z -x > 𝑍1𝑘 − 𝑋1𝑘 if and only if                                 

2k-1 -√𝛿(𝑑) <
𝑥+𝑧

𝑦
< 2𝑘 − 1 + √𝛿(𝑑). 

Note that it is straightforward to show 

 √𝑑
2𝑘−√𝑑−1

√𝑑−1
<

𝑥+𝑧

𝑦
< 2𝑘 − 1 − √𝛿(𝑑)                         
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if and only if  

k < 
1

2
[√𝑑(√𝑑 − √𝛿(𝑑)) + 1 + √𝛿(𝑑)].                          

By  hypothesis , assume that 

2k -1 - √𝛿(𝑑) < 
𝑥+𝑧

𝑦
≤  2𝑘 − 1 where q≤ 𝑘 ≤ 𝑞 +

𝑟 + 1. 

By the above, the components of (𝑥𝑗𝑘 , 𝑦𝑗𝑘 , 𝑧𝑗𝑘) are 

positive and 

 z -x > 𝑍1𝑘 − 𝑋1𝑘  . Since 

 k≤ (𝑞 + 𝑟) + √𝛿(𝑑) <
1

2
[√𝑑(√𝑑 − √𝛿(𝑑)) +

1 + √𝛿(𝑑)]. There fore by the second equivalence 

above, we have that 

  √𝑑
2𝑘−√𝑑−1

√𝑑−1
<  2𝑘 − 1 − √𝛿(𝑑) < 

𝑥+𝑧

𝑦
≤  2𝑘 −

1 < 2𝑘 − 1 + √𝛿(𝑑) ; and thus z-x > 𝑍1𝑘 − 𝑋1𝑘. 

Note that √𝑑 < 
𝑥+𝑧

𝑦
≤  2𝑘 − 1 ,it follows that 

  k>
√𝑑+1

2
 =  

√𝑑+3

2
 − 1 =  𝑞 − 1 ; so the hypothesis 

that k≥ 𝑞 is necessary. Finally, if 
𝑥+𝑧

𝑦
 = 2𝑘 − 1, then 

a(𝑍1𝑘 − 𝑋1𝑘) = 𝑚 (
𝑥+𝑧

𝑦
− (2𝑘 − 1)2) = 0 

(b) Let j =3. 

𝑋3𝑘 ≥ 0 ⟺ √𝑑
2𝑘−√𝑑−1

√𝑑−1
<

𝑥+𝑧

𝑦
<  √𝑑

2𝑘+√𝑑−1

√𝑑+1
 as 

with 𝑋1𝑘 > 0, similary 

𝑌3𝑘 > 0 ⟺ 𝑍3𝑘 + 𝑋3𝑘 >  𝑍3𝑘  −  𝑋3𝑘 

  ⟺ (𝑏𝑛 − 𝑎(2𝑘 − 1)))(𝑏𝑛 − 𝑎𝑑) < 0 

                           ⟺  2𝑘 − 1 < 
𝑥+𝑧

𝑦
<  √𝑑

2𝑘+√𝑑−1

√𝑑+1
. 

Next, z -x > 𝑍3𝑘  −  𝑋3𝑘 is equivalent to 2k-1 -√𝛿(𝑑) 

<
𝑥+𝑧

𝑦
< 2𝑘 − 1 + √𝛿(𝑑) as in (a). 

Moreover, z -x = 𝑍3𝑘  −  𝑋3𝑘 if and only if  
𝑥+𝑧

𝑦
=

2𝑘 − 1 + √𝛿(𝑑) . In this case , if d is even, then (x 

,y,z) is a binary root by theorem 2. 

 By direct calculation , 2𝑘 − 1 + √𝛿(𝑑) < 

√𝑑
2𝑘+√𝑑−1

√𝑑+1
 if and only if  

 k< 
1

2
[√𝑑(√𝑑 − √𝛿(𝑑)) + 1 −  √𝛿(𝑑)] since 2k-1 - 

√𝛿(𝑑)  < 2𝑘 − 1 < √𝑑
2𝑘+√𝑑−1

√𝑑+1
 by (4) , and we have 

the above intervals on 
𝑥+𝑧

𝑦
 for positivity and the 

inequality z -x > 𝑍3𝑘  −  𝑋3𝑘, it follows that part (a) 

of definition 1 holds for (𝑥3𝑘, 𝑦3𝑘 , 𝑧3𝑘) if and only if 

i) 2k-1 < 
𝑥+𝑧

𝑦
 < 2k-1 + √𝛿(𝑑) when 

 k< 
1

2
[√𝑑(√𝑑 − √𝛿(𝑑)) + 1 −  √𝛿(𝑑)] and 

ii) 2k-1 < 
𝑥+𝑧

𝑦
 < √𝑑

2𝑘+√𝑑−1

√𝑑+1
  otherwise. 

Let d≥ 6 and assume that k< 
1

2
[√𝑑(√𝑑 − √𝛿(𝑑)) +

1 − √𝛿(𝑑)] .By remark 1, k≤ 𝑞 + 𝑟. Then 2k-1 < 
𝑥+𝑧

𝑦
 < 2k-1 + √𝛿(𝑑) holds where 

𝑥+𝑧

𝑦
> √𝑑 ,so k> 

1

2
[√𝑑(√𝑑 − √𝛿(𝑑)) + 1]. It follows By theorem 2, 

a positive integer multiple of ( x , y , z) will be binary 

root. 

  ( c) Let j =2. 

     𝑋2𝑘 > 0 ⟺ 𝑍2𝑘 + 𝑋2𝑘 >  𝑍2𝑘  −  𝑋2𝑘 

       ⟺m(𝑏𝑛 − 𝑎(2𝑘 − 1)2 − 𝑛(𝑎𝑚 − 𝑏)2) > 0 

     ⟺ (
𝑥+𝑧

𝑦
− √𝑑

2𝑘−√𝑑−1

√𝑑−1
) (

𝑥+𝑧

𝑦
− √𝑑

2𝑘−√𝑑−1

√𝑑+1
)>0 

⟺  𝑒𝑖𝑡ℎ𝑒𝑟 
𝑥+𝑧

𝑦
< √𝑑

2𝑘−√𝑑−1

√𝑑−1
 or 

𝑥+𝑧

𝑦
> √𝑑

2𝑘−√𝑑−1

√𝑑+1
 

𝑌2𝑘 > 0 ⟺ 2k-1 < 
𝑥+𝑧

𝑦
 < 𝑑   as with 𝑌3𝑘 > 0. 

𝑍2𝑘 > 0 is identical to that of 𝑍1𝑘 > 0. 

It follows that all components are positive if and only 

if 

  √𝑑
2𝑘−√𝑑−1

√𝑑+1
< 

𝑥+𝑧

𝑦
< 𝑑.  

And it is easy to check that 

 √𝑑
2𝑘−√𝑑−1

√𝑑+1
< √𝑑(√𝑑 − √𝛿(𝑑)) if and only if  

k < 
1

2
[√𝑑(√𝑑 − √𝛿(𝑑)) + 1 + √𝛿(𝑑)]. Therefore 

by (4) and the above results , (𝑥2𝑘 , 𝑦2𝑘 , 𝑧2𝑘) fulfils 

part (a) of Definition 1 if and only if 

√𝑑(√𝑑 − √𝛿(𝑑)) < 
𝑥+𝑧

𝑦
 < 𝑑 when k < 

1

2
[√𝑑(√𝑑 −

√𝛿(𝑑)) + 1 + √𝛿(𝑑)], and   √𝑑
2𝑘−√𝑑−1

√𝑑+1
< 

𝑥+𝑧

𝑦
< 𝑑 

otherwise. 

It follows that 

       i) √𝑑 < 
𝑥+𝑧

𝑦
 < d where k = 1 and 2≤ 𝑑 ≤ 5 or 

      ii)  √𝑑 
2𝑘+√𝑑−1

√𝑑+1
<

𝑥+𝑧

𝑦
≤ 𝑑, where d≥  6 and  
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                q + r < k < 
1

2
[

√𝑑+1

√𝑑
(

𝑥+𝑧

𝑦
) + 1 −  √𝑑].  

In this case, faster convergence is obtained with the 

highest possible value of k. 

Finally , if 
𝑥+𝑧

𝑦
 = 𝑑 , then n(𝑍2𝑘  −  𝑋2𝑘) = 

(𝑏𝑛 − 𝑎𝑑)2 = 0. 

On the other hand, suppose that k = 
𝑑+𝛿(𝑑+1)

2
 where d 

= m n is a square free. 

(d) (j=0) 

 𝑋0𝑘 > 0  ⟺ 𝑛(𝑍0𝑘 + 𝑋0𝑘) − 𝑛( 𝑍0𝑘  −  𝑋0𝑘) > 0 

           ⟺ (𝑏𝑛 − 2𝑎𝑑)2-(𝑎√𝑑)
2
>0                        

⟺ (
𝑥 + 𝑧

𝑦
− √𝑑(2√𝑑 − 1)) (

𝑥 + 𝑧

𝑦

− √𝑑(2√𝑑 + 1)) > 0   

 ⟺  𝑒𝑖𝑡ℎ𝑒𝑟 
𝑥+𝑧

𝑦
< √𝑑(2√𝑑 − 1)or 

𝑥+𝑧

𝑦
>

√𝑑(2√𝑑 + 1). 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 , 𝑌0𝑘 > 0  ⟺ 𝑛(𝑍0𝑘 + 𝑌0𝑘) − 𝑛( 𝑍0𝑘  −

 𝑌0𝑘) > 0 

⟺  𝑏𝑛 < 2𝑎𝑑 ⟺ 
𝑥+𝑧

𝑦
< 2𝑑. 

𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝑍0𝑘 = n 𝑏2 − (4𝑎𝑚𝑛)𝑏 + 𝑎2𝑚(4𝑚𝑛 +

1)  = 0 is a quadratic In b with roots b= (2am√𝑛 ±

𝑎√𝑚𝑖)/√𝑛. Evaluating 𝑍0𝑘 at b = 2am√𝑛 , we have 

that 

𝑍0𝑘 =  𝑎2𝑚 (1 + 4𝑚𝑛(√𝑛 − 1)
2

) > 0, so 𝑍0𝑘 is 

always positive. It follows that the components are 

positive if and only if  
𝑥+𝑧

𝑦
< √𝑑(2√𝑑 − 1).  

Next , z – x =2 𝑎2𝑚 = 𝑍0𝑘  −  𝑋0𝑘. 

Moreover , n(z-𝑍0𝑘)  =  4𝑎𝑑(𝑏𝑛 − 𝑎𝑑) =

 4𝑎2𝑑(
𝑥+𝑧

𝑦
− 𝑑) and z > 𝑍0𝑘 since by assumption 

𝑥+𝑧

𝑦
>  𝑑 ;so (d) follows. 

Example 1: Let d = (3*5*7*11*13*17 and (x , y ,z) = 

A(385,663,34,19) =(627443,1292,905413). Then q= 

254, r= 127016 and 

 √𝑑 < 2q-1-√2. By theorem 1, G(d)** .is a generating 

set for all primitive solutions;  and by corollary 1, we 

have the following descent.  

Since 
𝑥+𝑧

𝑦
< 𝑑 , we start with 

(a) K = 594 checks out, but 
𝑥+𝑧

𝑦
≠2k-1. Our first 

descent matrix is  

e(1).S(q+340,d).(x,y,z)=(17573773279,80091, 

17573819864)  

        = 
1

2
𝐴(385,663,7281,11) = (x1 ,y1,z1) 

Note that z – x = 277790 >  z1-x1 (=46585). 

Replacing (x , y ,z) with (x1 ,y1,z1),we return to (a) 

where now 

 
𝑥+𝑧

𝑦
 > 𝑑. Thus with k=

𝑑+1

2
 = q+r+358 , we check (d) 

holds. Our next descent is e(0) .S(q+r+358,d).(x ,y ,z) 

=(468625219,13079,468671804) = 
1

2
𝐴(385,663,1189,11)= (x1 ,y1,z1). Then z – x = 

46585 = z1-x1. 

Replacing (x , y, z) with (x1 ,y1,z1),since 
𝑥+𝑧

𝑦
 <  𝑑, 

we are back to (a) both possibilities for k fail. So we 

go to 

(b) (i) Here k =126219 = q+125695 and the next 

descent matrix is           

e(3). S(q+125965 ,d). (x ,y ,z) =(95611 ,17,95996)  

= 
1

2
𝐴(385,663,17,11) = (x1 ,y1,z1) and 

 z-x =12320 > z1-x1 (=385). Replacing (x , y, z) with 

(x1 ,y1,z1),since 
𝑥+𝑧

𝑦
 <  𝑑, we are back to (a)                    

k = 5636 =q+5382 checks out: and 

  
𝑥+𝑧

𝑦
 = 2k-1 so we are done with 𝑍1𝑘  −  𝑋1𝑘= 0.                   

So our final descent matrix is                                                                                                    

e(1) . S(q+5382,d).   (x ,y ,z) = (22446528 

,0,22446528). 

Trees of Primitive Solutions 

 A tree of the primitive solutions to (1) is an infinite 

network of nodes where each node branches ( in our 

case via ascent matrix multiplications) to  a number 

of subsequent nodes, with the totality giving all , and 

only , primitive solutions without duplication. By 

theorem 1, trees exist when d is 2 , 6, or any odd 

square-free positive integer. For any other even 

square-free d, the primitive solutions are attained 

from a finite forest of such trees. 

Specifically, for any given node (x, y, z) there is a 

unique path via descent matrices back through the 
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tree to either (1,0,1) or a primitive binary root; i.e., if  

(x , y ,z) is not a root , then exactly one of the matrices 

g in M(d)* or M(d)** exists such that g-1.(x , y , z)  

produces a new node (x′, y′, z′) that satisfies Definition 

1. 

In the classical case d =1, the tree of primitive 

solutions is derived by simply taking all possible 

ascending products of three generators stemming 

from (1, 0 ,1). This is possible since products always 

produce distinct primitive solutions in this case. 

 For square-free d > 1 , families of generators are 

defined for the primitive solutions that satisfy the 

requirements for a tree structure with four exceptions 

that may easily be remedied by adjusting or removing 

improper branches. 

Let G denote G(d)* or G(d)** , and let g = S(k , d).e(j) 

be in G. Reversing the descent notion of definition 1, 

Assume (x′, y′, z′) is a primitive solution of (1). 

g. (x′, y′, z′) = (x , y, z)  and , as in the proof of 

Theorem 1,  

e(j). S( k, d). (x , y ,z) = i′ (x′, y′, z′) satisfies Fermat’s 

Descent method for some positive integer i′. Unlike 

the case d = 1, it is necessary to consider the 

following anomalies. 

A1) The components of (x, y, z) may not all be 

positive 

A2) The components of (x, y, z) may be positive but 

not relatively prime. 

A3) For some odd square-free d, there may exist g in 

G such that the binary root conditions z′- y′ = z -y in 

part (c0 of Definition 1 hold: 

A4) There are duplicate nodes in the first level of the 

derived tree that must be pruned. They arise form the 

subsets 

{𝑆(𝑞 + 𝑠, 𝑑). 𝑒(3). 𝑤, 𝑆(𝑞 + 𝑠 + 1, 𝑑). 𝑒(1). 𝑤} (0 ≤

𝑠 ≤ 𝑟) 

For some primitive root w as follows. 

i) For odd square-free d≥  13 , the nearest nodes 

in the abutting sets agree when w = ( 1,0 ,1): 

{𝑆(𝑞 + 𝑠 + 1, 𝑑). 𝑒(1). 𝑤, 𝑆(𝑞 + 𝑠 + 1, 𝑑). 𝑒(3). 𝑤} 

(0 ≤ 𝑠 ≤ 𝑟) 

Since e(1) . w = e(3) .w 

ii) For even square-free d≥  10 and standard binary 

root w = 𝐴 (
𝑑

2
, 2, 𝑘, 1) as defined in Theorem 2, there 

exists a unique s in [0, r] such that 

𝑆(𝑞 + 𝑠, 𝑑). 𝑒(3). 𝑤

𝑔𝑐𝑑[𝑆(𝑞 + 𝑠, 𝑑), 𝑒(3). 𝑤]

=
𝑆(𝑞 + 𝑠 + 1, 𝑑). 𝑒(1). 𝑤

𝑔𝑐𝑑[𝑆(𝑞 + 𝑠 + 1, 𝑑), 𝑒(1). 𝑤]
 

iii) The interval decomposition in the proof of 

theorem 1 is disjoint except for the intervals 

corresponding to the descent matrices                                      

e(3). S(q + s, d) and 

e(1). S(q+s+1 ,d) when d is odd. If (x , y, z) = A( m, 

n, a, b) is a primitive solution to (1) such that b x n is 

in the intersection 

[(𝑎(2(𝑞 + 𝑠) + 1) + 1 − √2), (𝑎(2(𝑞 + 𝑠) + 1) +

1 − √2)] of these intervals, then there exist two 

distinct paths form (1,0,1) to (x, y, z). 

CONCLUSION 

we proposed one of the method to generate A tree of 

the primitive solutions to (1) is an infinite network of 

nodes where each node branches ( in our case via 

ascent matrix multiplications) to  a number of 

subsequent nodes, with the totality giving all , and 

only , primitive solutions without duplication. By the 

b x n-interval decomposition of  (a√𝑑., ∞ ) in the 

proof of theorem 1, the only way that distinct paths 

may arise form (1 ,0,1) to (x ,y,z) is by A4. Moreover, 

the only nontrivial anomalies when d  is even are A1 

,A2 , and A4. By the parametric intervals method of 

descent , after some modifications at each level, the 

primitive solutions of (1) satisfy requirements for one 

or more tree structures with generating sets G(d)* or 

G(d)** . 
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