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Abstract - In this paper focused to study the well-known 

matrix-generated tree structure for Pythagorean triples 

is extended to the primitive solutions of the Diophantine 

equation Px2 + y2 - z2 = 0 …………….[1] where P is a 

positive square-free integer. Also, focused to study the 

basic structure of the solutions to the Diophantine 

equations px2 +y2- z2 = 0 is determined. Since above 

equation is homogeneous, we may assume that (x, y, z) 

is primitive. Hence for p =1, all such Pythagorean 

triples form an infinite tree with root (3, 4, 5). All nodes 

descend to (3, 4 ,5) and each node appears exactly Once. 

For each P>1, we construct finite sets of matrices and 

finite sets of roots that generate all the solutions to Px2 

+y2-z2 = 0. Given a primitive solution (x, y, z) of Px2 +y2 

- z2 = 0, an algorithm to describes a path (or descent) 

from (x, y, z) to some element in the finite set of roots. 

Keywords - Diophantine Equation, Square-free integer, 

Primitive Solution, Seminal Matrices. 

INTRODUCTION 

The well-known Matrix generated tree structure for 

Pythagorean triples is extended to the primitive 

solutions of the Diophantine equation Px2 +y2-z2 = 0, 

where P is a positive square free integer.  

The essential idea of a generating set for solutions of 

(1) is a variation of Fermat’s method of descent that 

requires the following to be true for special related 

sets of nonsingular matrices: 

              Definition 1: Let p be a positive square-free integer 

and let M(P) be a set of nonsingular matrices. A 

primitive solution (x, y, z) of (1) satisfies Fermat’s 

method of descent with respect to M(d) if there exists 

an element g of M(P) such that g-1. (x, y, z) is a 

positive integer multiple of a primitive solution (x′, 

y′, z′) where one of the following holds:  

a) z - y > z′ - y′ 

b) z - y = z′ - y′ and z > z′ 

c) P ≥ 10 is even and (x, y, z) is a binary root, i.e., z 

- y = z′ - y′ and z < z′. In this case, (x′, y′, z′) 

is called the co-partner of (x, y, z). 

Suppose that primitive solution (x, y, z) of (1) 

satisfies Definition 1. If the scaled (by its  gcd) output 

(x′, y′, z′) successively satisfies Definition 1, we show 

for a specific set M(P) that after a finite number of 

steps (or descents) the result is a positive integer 

times either  (1, 0, 1) or a primitive binary root. 

Moreover, we characterize all binary roots (x, y, z) 

and their copartners (x′, y′, z’) in Theorem 2, and 

prove that (x′, y′, z′) intertwines (x, y, z) indefinitely: 

(x, y, z), (x′, y′, z′), (x, y, z), (x′, y′, z′), etc. 

Definition 2:  A finite set G of matrices with integer 

entries is said to be a generating set for solutions to 

(1) whenever the following conditions hold: 

if g is in G and w = (x, y, z) is an integer solution to 

(1), then g.w also satisfies (1); and                                                                 

a) if w is a primitive solution to (1), then there exist a 

positive integer k and a primitive          root r that is either 

binary or (1, 0, 1) such that 

k × w = (finite product of matrices from G). r. 

The origin of the generating sets G = G(P) is in my 

observation that if (x, y, z) satisfies (1), then so does          

( x′ = x - u t, y′ = y - v t, z′ = z - w t ) where            

(u, v, w) is not a solution to (1) and  

t = 
2(𝑃𝑈𝑥 + 𝑣𝑦 − 𝑤𝑧)

𝑝𝑢2+𝑣2−𝑤2
  or equivalently         M(u, v, w, P) 

. (x, y, z) satisfies (1) where Pu2 +  v2 ≠ w2         and  

 M(u, v, w, P) = 

1

𝑝𝑢2+𝑣2−𝑤2
(

−𝑝𝑢2 + 𝑣2 −𝑤2 −2𝑝𝑢𝑣 2𝑝𝑢𝑤

−2𝑝𝑢𝑣 𝑝𝑢2 − 𝑣2 −𝑤2 2𝑣𝑤

−2𝑝𝑢𝑤 −2𝑣𝑤 𝑢2 + 𝑣2 + 𝑤2

) 

Definition 3: Let P be a square-free positive integer, 

and let ẟ(p) denote 1 is P is even and 2 otherwise. 

The K th seminal matrix S (k,P) is defined by:                                                
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S(k ,P) =
𝑝−(2𝑘−1)

ẟ(p)
 M(k-1,1,k,p) for k = 0,1,2,3,….. 

𝑃+ẟ(p+1)

2
 -1. and S (

𝑃+ẟ(p+1)

2
, 𝑝) =  𝑀(𝑝, 1, 𝑝, 𝑝) .           

Then for all k and d, S(k, p) is an integer matrix such 

that if (x, y, z) is a primitive solution to (1), then                         

S(k, P) . (x, y, z) is an integer solution to (1). 

Multiplication by the elementary matrices 

e(0) = (
1 0 0
0 1 0
0 0 1

) ,  e(1) = (
−1 0 0
0 1 0
0 0 1

),  

e(2) = (
1 0 0
0 −1 0
0 0 1

) ,  e(3) = (
−1 0 0
0 −1 0
0 0 1

) 

will be used to ensure that the components of 

solutions are nonnegative. In particular paths from (x, 

y, z) to a root will be in terms of products of descent 

matrices     e(j) . S(k, p), whereas paths back to (x, y, 

z) will be with products of ascent matrices S(k, P) . 

e(j). Our main result is 

Main Result: 

Theorem 1: For any positive square-free integer P,  

the set G(P) = {S(k, P). e(j): 1 ≤  k ≤

𝑝+ẟ(P+1)

2
, 0 ≤  j ≤  3} generates all primitive 

solutions to (1). 

Proof : Minimal generating subsets of G(P) are G (P) 

* and G (P) ** defined as follows: If P = 1, then G 

(P) * = {S( 
𝑝+1

2
  , P) . e(j) ∶  1 ≤  j ≤  3} and                                             

If   P = 2, 3, or 5, then  

G (P) * =  { S(1, P) . e(2) } ⋃ S( 
𝑝+ẟ(P+1)

2
  , P) . e(j) ∶

 1 ≤  j ≤  3}  

Finally for p ≥ 6, let q = floor(√
𝑝+3

2
), 

 r = floor {
1

2
√𝑝(√𝑝 − √ẟ(P)) − (2𝑞 − 1 +

√ẟ(p))}.  

And G (P) * = {S(q + s, P) . e(1), S(q + s, P) . e(3) : 

0 ≤ s ≤ r + 1 } ⋃ 

 { S(q + r + 1, P) . e(2) } ⋃ { S(
𝑝+ẟ(P+1)

2
,p) . e(j) : 0 ≤ 

j ≤ 3 },which is clearly represents as follows 

a)  2𝑞 − 1 + √ẟ(P) < √𝑝, then G (P) * is a 

generating set for all primitive solutions. 

 b) On the other hand, if 2𝑞 − 1 + √ẟ(P) >

√𝑝   then  

G (P) ** = {S (q - 1, P). e (3) } ⋃ G (P) * is a 

generating set. 

Remark 1: Since x - 1 < floor(x) < x for irrational x, 

we have the following useful bounds: q + r < 
1

2
√𝑝(√𝑝 − √ẟ(P)) − (−1 + √ẟ(p)) < q + r + 1. 

Parametric Representation:  

From References [1],[2],[3] we can go to define 

following Propositions: 

Proposition 1: Let P be an even square-free positive 

integer. The primitive solutions (x , y, z) of (1) are 

exactly of the form   

A(m, n, b, a) ≡ {𝑦 = 𝑛𝑏2 −𝑚𝑎2, 𝑥 = 2𝑎𝑏, 𝑧 =

𝑛𝑏2 +𝑚𝑎2} for positive integers m, n, a and b such 

that   P = mn , bn>a√𝑝 and gcd (b n , a m) =1. On the 

other hand, if p is an odd square-free integer, then the 

primitive solutions (x, y, z) of (1) are given exactly 

by the following: when y is even, (x , y , z) = A(m, n, 

b, a) as defined above where, in addition,  a and b are 

opposite parity, And when y is odd                                                      

(x, y , z) = 
1

2
𝐴(𝑚, 𝑛, 𝑎, 𝑏) where a and b are odd. 

Proof: Suppose that (x , y, z) is a primitive solution 

of (1) that may be written 

{
𝑝 (

𝑥

2
)
2

= (
𝑧−𝑦

2
) (

𝑧+𝑦

2
) , 𝑤ℎ𝑒𝑛 𝑦 𝑖𝑠 𝑒𝑣𝑒𝑛

 p𝑥2  =  (𝑧 − 𝑦)(𝑧 + 𝑦) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   …….(2) 

Assume first that P is even. Then by (1) , x and z have 

the same parties , 

 P𝑥2  =  (𝑧 − 𝑦)(𝑧 + 𝑦) where z-y and z + y are 

even, and since P is square-free, x2 and x are even. It 

follows that y and z are odd since (x, y, z) are 

primitive.  And by (2), each prime factor (including 

2) of P divides either (
𝑧−𝑦

2
)  𝑜𝑟 (

𝑧+𝑦

2
), i.e., there exist 

square-free integers m and n such that P = mn and 

 𝑝 (
𝑥

2
)
2

= (
𝑧−𝑦

2𝑚
) (

𝑧+𝑦

2𝑛
). Moreover, any prime divisor 

of (
𝑧−𝑦

2𝑚
)  𝑜𝑟 (

𝑧+𝑦

2𝑛
) must be 1 since it also divides 

𝑥

2
 ,
𝑧−𝑦

2
 𝑎𝑛𝑑 

𝑧+𝑦

2
 (i.e., y, x and z). Consequently, 

 
𝑧−𝑦

2𝑚
=  𝑎2 and 

𝑧 +𝑦

2𝑛
= 𝑏2 for positive integers a and b 

by the prime factorization theorem. 
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Solving for ( x , y , z) we have ( x , y , z) = A ( m , n 

, a, b)  where b n > a √𝑝 . Moreover, gcd (b n, a m) 

=1 if and only if gcd ( 𝑏2𝑛, 𝑎2𝑚) = 1 if and only if  

gcd  (
𝑧−𝑦

2
 ,
𝑧+𝑦

2
)=1 if and only if gcd (y, z) = 1. 

Let p be a prime divisor of x and z. Then 𝑝2 divides 

𝑝 (
𝑥

2
)
2

 by (2) where p may be at most one factor of P. 

It follows that p divides 
𝑥

2
 (and y) so that p =1 since 

 (x, y, z) is primitive. A similar argument may be 

made when p is odd. 

Remark 2: For a fixed factorization P = m n ≠ 1 of 

square-free P and primitive solution (x, y, z) of (1), 

we have the following simple criteria for types:                                     

a) (x, y, z) = A (m n, b, a) if and only if  
𝑧−𝑦

2𝑚
 is a square 

integer.                                                                                                   

b) (x, y, z) = 
1

2
 A (m, n, b, a) if and only if 

𝑧−𝑦

𝑚
 is a 

square integer. 

These ensue directly from Proposition 1: For (a), 
𝑧−𝑦

2𝑚
= 𝑎2  so we show that the condition 

𝑧−𝑦

2𝑚
 is a 

square integer holds only in this case. The other 

possibilities are           (x, y, z) = A (m, n ,b, a) where  

gcd( bm ,an ) =1.                          

But in this case, 
𝑧−𝑦

2𝑚
 = 

𝑛𝑎2

𝑚
≠ square integer, since gcd 

(m, n) =1= gcd (m, a). 

(x, y, z) = 
1

2
 A (m, n, b, a) where  

𝑧−𝑦

2𝑚
 = 

𝑎2

2
 is not a 

square integer. 

(x, y, z) = 
1

2
 A (m, n, b, a) where  gcd (bm ,an ) =1. 

And again, in this case, 

 
𝑧−𝑦

2𝑚
 = 

𝑛𝑎2

𝑚
≠ square integer, since gcd (m, n) =1= gcd 

(m, a). hence (b) is similar. 

Remark 3: The proof of Proposition 1 shows the 

following concerning the parametric representations 

of primitive solutions (x , y ,z) of (1) for square-free 

d: If  y is even , then ( x , y ,z) = A( m ,n ,a, b) where 

m is the product of the common factors of d and 
𝑧−𝑦

2
; 

and n = 
𝑝

𝑚
, Moreover, a = √

𝑧−𝑦

2
 and b= √

𝑧+𝑦

2
. In this 

case, if p is odd, then a and b are of opposite parity. 

On the other hand, if y is odd, then d is odd and (x, y, 

z) = 
1

2
 A (m, n, b, a) where m is the product of the 

common factors of d and z-x; and n = 
𝑝

𝑚
.  In this case, 

a and b are odd such that a = √
𝑧−𝑦

2
 and b= √

𝑧+𝑦

2
. 

Remark 4: Since A(m , n , b, a) = n𝑏2(1,0,1)+ 

2ab(0,1,0)+ m𝑎2(−1,0,1) expressions involving                      

S(k, P) . A (m, n, b, a) may be simplified accordingly: 

If   k < 
𝑝+ẟ(P+1)

2
, then  ẟ(P) S(k, P). A (m, n, b, a) 

=   n𝑏2𝐴(1, 𝑝, 1,1)+2ab(2P(k-1), P+(2k-1),2Pk)+ 

m𝑎2𝐴(𝑝, 1,2𝑘 − 1,1) 

Otherwise, 

 ẟ(P) . S (
𝑝+ẟ(P+1)

2
, 𝑑)) . 𝐴(𝑚, 𝑛, 𝑏, 𝑎)  =

 n𝑏2(1,0,1)+ 2ab (2P,1,2P)+ m𝑎2𝐴(1, 𝑝, 1,2). 

The next result will be useful in expressing primitive 

solutions in terms of a generating set according to 

Definition 2. 

Lemma 1: The descent and ascent matrices are 

related by inverse formulas for j, k and P: 

𝑒(𝑗), 𝑆(𝑘, 𝑝)−1

=

{
 
 

 
 𝑆 (𝑘, 𝑝). 𝑒(𝑗)       𝑖𝑓 𝑘 =

𝑝 + ẟ(p + 1)

2

(
𝑝 − (2𝑘 − 1))

ẟ(P)
)

−2

 𝑆(𝑘, 𝑝). 𝑒(𝑗)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof: Suppose that (x, y, z) is a solution to (1) and 

𝑝𝑢2 + 𝑣2 ≠ 𝑤2. By the definitions of M and t given 

in section 1,           M(u, v, w, P) .(x , y, z) = ( x′ = x - 

u t, y′ = y - v t, z′ = z - w t )                                                                     

is a solution to (1) such that                                                

M(u, v , w, P) .( x′ , y′, z′) = ( x′′ = x′ - u t′, y′′ = y′ - 

v t′, z′′ = z′ - w t′ )                                                               

where t′ = -t. Consequently, (x′′ , y′′, z′′) = ( x , y ,z)  

and M(𝑢 , 𝑣 , 𝑤, 𝑝)2. (𝑥 , 𝑦 , 𝑧)  =  (𝑥 , 𝑦, 𝑧).                                        

For every solution (x , y, z) to (1). In particular, By 

proposition 1, this identity holds for                                            

(x , y , z) = A ( 1,p , P+2n-1,1) where ( n = 1,2,3).                                                 

Since the determinant of the matrix with these 

solutions as rows is -64p ≠  0 , we have that the 

solutions are linearly independent and therefore 

M(𝑢 , 𝑣 , 𝑤, 𝑝)2 is the identity matrix, Lemma 1 is 

now immediate since the vectors (u , v, w) in the 

definitions of the seminal matrices S( k , P) satisfy 

                                    𝑝𝑢2 + 𝑣2 ≠ 𝑤2. 

Theorem 2: We now show that the only possibility of 

binary roots ( x , y , z) defined by Definition 1 is when 

square-free  P = m n ≥ 10 is even and (x , y , z) = A( 

m, n, a, b) where b X n = a (2k) . In this case, the 
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Identity   n A( m ,n, a, b) = 2𝑎2𝐴 (
𝑝

2
, 2 , 𝑘, 1) reduces 

A( m ,n, a, b)  to “ standard’ binary roots of the form 

𝐴 (
𝑝

2
, 2 , 𝑘, 1).Moreover , the co-partner A′ ( m ,n, a, 

b)  of  ( x , y, z) satisfies n A( m ,n, a, b) = 

2𝑎2𝐴 (
𝑝

2
, 2 , 𝑘, 1) where b X n = a (2(

𝑝

2
− 𝑘)). Note 

that the multiples n and 2a2 will usually be ignored in 

the descent process. 

The next result of Lemma 2, will play key role in 

determining the constant k. 

Lemma 2: Let P≥ 6 be a square-free even integer, 

The following are equivalent.                                                                                 

a) P = 4q+2r -2                                                                             

b) √𝑝 < 2(𝑞 − 1)                                                                             

c) r is even                                                                           

Similarly the following are equivalent:                                         

d) P = 4q +2r                                                                                  

e) √𝑝 > 2(𝑞 − 1)                                                                           

f) r is odd 

Proof: Let P >6 be even and square-free,  

(a) ⇒ (c) , If P = 4q +2r -2, then  
𝑝

2
 =  (2𝑞 − 1) + 𝑟.                      

so r is even since  
𝑝

2
 and 2q-1 are odd.                                                    

(d) ⇒ (f), similar to (a) ⇒ (c).                                                                    

(b) ⇒ (a). Assume that √𝑝 < 2(𝑞 − 1). Then by the 

definitions of q and r,  

4q +2r -2 < 4 (
1

2
(√𝑝 + 3)) + 2 ((

1

2
[√𝑝(√𝑝 − 1) −

2𝑞])) − 2  

               = p+[√𝑝 − 2(𝑞 − 1)] + 2  < p+2 

By the assumption. Since 4q +2r -2 and P+2 are even 

integers, we have that  4q +2r -2≤ P. Moreover, as in 

Remark 3, 

 4q +2r -2 > 4q +2((
1

2
[√𝑝(√𝑝 − 1) − 2𝑞])) − 2 

                = [2(𝑞 − 1) − √𝑝] − 2  < P-2 

So 4q +2r -2≥ p and (a) follows. 

(e) ⇒ (d). Assume that √𝑝 > 2(𝑞 − 1).                                           

Then in this case, 

4q +2r -2 < 4 (
1

2
(√𝑝 + 3)) + 2 ((

1

2
[√𝑝(√𝑝 − 1) −

2𝑞])) − 2  

               = p+[√𝑝 − 2(𝑞 − 1)]  < p 

By assumption, Since 4q +2r -2 and d are even ,                                   

4q +2r -2≤ p.                                                                                                          

In addition, 4q +2r> 4 (
1

2
(√𝑝 + 3)) +

2 ((
1

2
[√𝑝(√𝑝 − 1) − 2𝑞])) − 1 =  p+[√𝑑 − 2(𝑞)]  

> p-2.                                                   

Since 4q+2r and p-2 are even, 4q +2r ≥ p and (d) 

follows.                                                                                                      

(a) ⇔ (b) It remains to show that (a) ⇒ (b). Assume 

that d = 4q +2r-2. Then either  √𝑝 < 2(𝑞 − 1) or 

√𝑝 > 2(𝑞 − 1).                                                                                              

However, if √𝑝 > 2(𝑞 − 1),then by (e) ⇒ (d),                                    

p = 4q+2r which is false in this case, so √𝑝 <

2(𝑞 − 1).   (d) ⇔ (e). We only need to show (d) ⇒ 

(e) , which is similar to (a) ⇒ (b).                                                                                  

(c) ⇔ (a). It remains to show (c) ⇒ (a). Assume that 

r is even. Either   √𝑝 < 2(𝑞 − 1) or √𝑝 > 2(𝑞 − 1).   

By the equivalences (a) ⇒ (b) and                                          

(d) ⇔ (e) , either  p= 4q+2r-2 or p= 4q+2r. But if                    

p = 4q +2r, then 
𝑝

2
 = 2q +r so r must be odd                              

(a Contradiction). Since 
𝑝

2
 is odd and 2q is even.           

It follows that p = 4q+2r -2 and (a) results.                                 

   (f) ⇔ (d). Similar to    (c) ⇔ (a).                                                      

By Lemma 2, we have the resulting characterizations 

of binary roots and their co-partners.                                            

Conclusion to the Proof of Theorem 2: 

Let d be a square-free positive integer , G =  G(p)* or 

G(p)** and suppose that (x , y ,z) is a primitive 

solution to (1), we will show that G satisfies 

Definition 2 of a generating set by using the proof to 

determine integers  

(𝑘𝑖 (1 ≤ 𝑘𝑖 ≤
𝑝+𝛿(𝑝+1)

2
) , 𝑗𝑖(0 ≤ 𝑗𝑖 ≤ 3))  𝑎𝑛𝑑 𝑛  

such that  S(𝑘𝑖  , 𝑝). 𝑒(𝑗𝑖) (1 ≤ 𝑖 ≤ 𝑛) is in G for the 

descent 

(𝑒(𝑗1). 𝑆(𝑘1, 𝑝)). . . . . . . . . (𝑒(𝑗𝑛). 𝑆(𝑘𝑛, 𝑝)) . (x , y ,z) 

= Kr 

Where r is either ( 1, 0,1) or a primitive binary root, 

and  

K = gcd  

((𝑒(𝑗1). 𝑆(𝑘1, 𝑝)). . . . . . . . . (𝑒(𝑗𝑛). 𝑆(𝑘𝑛, 𝑝)).               (x 

, y ,z)) taking inverses by Lemma 1 , we then have 
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[
1

𝐾
∏{(

𝑝−(2𝑘−1)

𝛿(𝑝)
)
2

: 𝑘𝑖 <
𝑝+𝛿(𝑝+1)

2
}] . (x, y, z) =   

〈𝑆(𝑘𝑛 , 𝑝). 𝑒(𝑗𝑛)〉……〈𝑆(𝑘1, 𝑝). 𝑒(𝑗1)〉. 𝑟   

Where the coefficient of ( x ,y ,z) is 1 whenever the 

product is over the empty set. Finally, since (x, y, z) 

is primitive and the right side is an integer triplet, the 

coefficient of ( x ,y ,z) must be a positive integer and 

hence G is a generating Set. 

Theorem 3: Let Square-free integer p≥ 10 be even, 

there are exactly 
𝑟+𝛿(𝑟+1)

2
 standard binary roots as 

follows. 

Let k = q +i +1- 𝛿(𝑟 + 1) for some integer I in [0, 
𝑟

2
]. 

Then 
𝑝

2
 - k  > k and we have the cycle:  

(𝑒(3). 𝑆(𝑘, 𝑝)). 𝐴 (
𝑝

2
, 2, 𝑘, 1) = 𝐴 (

𝑝

2
, 2,

𝑝

2
−  𝑘, 1) 

and 

(𝑒(3). 𝑆(
𝑝

2
 −  𝑘, 𝑝)) . 𝐴 (

𝑝

2
, 2,
𝑝

2
−  𝑘, 1)

= 𝐴 (
𝑝

2
, 2, 𝑘, 1) 

It follows that 𝐴 (
𝑝

2
, 2, 𝑘, 1) is a binary root with co 

partner 𝐴 (
𝑝

2
, 2,

𝑝

2
−  𝑘, 1) by definition 1. Moreover, 

if g(k) = gcd ( k, 
𝑝

2
), then 

𝐴 (
𝑝

2
, 2, 𝑘, 1) =  𝑔(𝑘) 𝐴 (

𝑝

2𝑔(𝑘)
, 2 𝑔(𝑘),

𝑘

𝑔(𝐾)
, 1) 

Where 𝐴 (
𝑝

2𝑔(𝑘)
, 2 𝑔(𝑘),

𝑘

𝑔(𝐾)
, 1) is primitive; and 

similarly 

𝐴 (
𝑝

2
, 2,

𝑝

2
−  𝑘, 1) = 𝑔(𝑘) 𝐴 (

𝑝

2𝑔(𝑘)
, 2 𝑔(𝑘),

𝑝

2
  −  𝑘

𝑔(𝐾)
, 1)  

where 𝐴 (
𝑝

2𝑔(𝑘)
, 2 𝑔(𝑘),

𝑝

2
  −  𝑘

𝑔(𝐾)
, 1) is primitive. 

Proof:  Let Square-free integer P≥ 10 be even. Then   

q≥ 3 and r≥ 0.                                                                                       

Suppose first that r is even and k = q – 1 + i where 

0≤ 𝑖 ≤
𝑟

2
. By Lemma 2 , P = 4q+2r-2 and  

𝑝

2
 – k = q 

+r – I > k. By remark 4, Since k≤ 𝑞 − 1 +
𝑟

2
< 

𝑝+𝛿(𝑝+1)

2
 =  2𝑞 + 𝑟 , 

(𝑒(3). 𝑆(𝑘, 𝑝)). 𝐴 (
𝑝

2
, 2, 𝑘, 1) =  2𝑘2{1 −

𝑝 , −2 , 𝑝 + 1} − 2𝑘{2𝑝(1 − 𝑘),1 − 2𝑘 −

𝑝, 2𝑝𝑘}  +
𝑝

2
{𝑝 − (2𝑘 − 1)2, −2(2𝑘 − 1), 𝑝 +

(2𝑘 − 1)2},  Moreover, 

𝐴 (
𝑝

2
, 2, 𝑘, 1) = {2 (

𝑝

2
−  𝑘)

2

− 
𝑝

2
, 2 (

𝑝

2
−

 𝑘) , 2 (
𝑝

2
−  𝑘)

2

+
𝑝

2
}. Expanding and comparing 

each component, we have proposed equation. 

By Proposition 1 , 𝐴 (
𝑝

2
, 2, 𝑘, 1) is a solution to (1) 

since p = (
𝑝

2
) 2 is even and  2 (

𝑝

2
−  𝑘) > √𝑝 : 

2 (
𝑝

2
−  𝑘) = 2(𝑞 + 𝑟 − 𝑖) > 2𝑘 >  √𝑝   by the first 

case. 

By the proof of Proposition 1, 𝐴 (
𝑝

2
, 2, 𝑘, 1) is 

primitive if and only in  gcd (2k ,
𝑝

2
 ) =1                                                                 

(or equivalently: gcd (k , 
𝑝

2
) =1,since P is square free). 

 The proof of the equation when r is odd is the same 

as in (a) except for different values of the variables. 

Furthermore, A (
𝑝

2
 ,2, 𝑘, 1) is a solution to (1) since                     

P = (
𝑝

2
) 2 is even and 2k > √𝑝  : by the definitions of 

k and q, we have 2k = 2 (q + i) ≥  2𝑞 >

2 (√
𝑝+3

2
− 1)> √𝑝 . Additionally, 𝐴 (

𝑝

2
, 2,

𝑝

2
−  𝑘, 1) 

is also a solution by the first case as in part (a). For 

the corresponding relations, simply replace k by 
𝑝

2
−

𝑘 in the algebraic part of above proof.                                                                                                             

Finally, by the proof of Proposition 1, 𝐴 (
𝑝

2
, 2,

𝑝

2
−

 𝑘, 1) is primitive if and only if gcd(2(
𝑝

2
−  𝑘),

𝑝

2
 ) =1 

(or equivalently as above : gcd (
𝑝

2
−  𝑘,

𝑝

2
)  = 1).                  

Factoring g(k) = gcd (k ,
𝑝

2
) out of 𝐴 (

𝑝

2
, 2, 𝑘, 1) and 

𝐴 (
𝑝

2
, 2,

𝑝

2
−  𝑘, 1) are straight forward computations. 

The first result is primitive since 
𝑝

2
 is square-free and      

gcd  (k ,
𝑝

2𝑔(𝑘)
 ) =1. And the second is similar since 

g(k) is also gcd (
𝑝

2
−  𝑘, 

𝑝

2
). 

A general interval decomposition: 

From References [1],[2],[3] , Consider the following 

possibilities for the set M(d) from definition 1. 

M(p) = {𝑒(𝑗), 𝑆(𝑘, 𝑝−1): 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑠 𝑖𝑛 𝐺(𝑝)}, 

M(𝑝)∗= {𝑒(𝑗), 𝑆(𝑘, 𝑝−1): 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑠 𝑖𝑛 𝐺(𝑝)∗}, 

M(𝑝)∗∗= {𝑒(𝑗), 𝑆(𝑘, 𝑝−1): 𝑗 𝑎𝑛𝑑 𝑘 𝑎𝑠 𝑖𝑛 𝐺(𝑝)∗∗}  of 

inverses of descent matrices. By Lemma 1, these sets 

contain non integer matrices, but in some sense 

𝐺(𝑝) , 𝐺(𝑝)∗, 𝐺(𝑝)∗∗ form theorem 1 will 

respectively be their generator completions. 
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Let (x , y, z) be a primitive solution of (1) , By 

Proposition 1, there is a unique factorization  P = mn 

such that (x , y, z) is either A(m, n, b, a) or 
1

2
 A( m, n, 

b, a) for certain positive integers a and b with b n > a 

√𝑝  and gcd (b n , a m) =1. The interval (a √𝑝 ,∞ ) 

will now be expressed as a union of subintervals with 

the property that if b n is in the kth subinterval, then 

there is an element 𝑔𝑗𝑘 of M(𝑝)∗ or M(𝑝)∗∗ such that 

𝑔𝑗𝑘
−1.{𝑥, 𝑦, 𝑧} is a positive integer multiple of a 

primitive solution {𝑥 ,, 𝑦 ,, 𝑧 ,} as in Definition 1. The 

following elementary result plays an essential role in 

identifying the generator 𝑔𝑗𝑘. It is expressed in an 

equivalent form without the parameters m,n , a, b; 

and consequently may be used to determine j and k 

when dealing with large values of d that are not 

feasible to factoring. 

By Proposition 1, for primitive solution ( x , y , z) of 

(1), 
𝑦+𝑧

𝑥
 = 

𝑏𝑛

𝑎
; and by the proof, gcd ( b n , a m) =1 is 

equivalent to gcd (x, z) = 1.(Actually , gcd (x, z) = 1 

follows from (x , y, z) being a primitive solution of 

(1).) 

Lemma 3: Let (x, y,z) be a primitive solution of (1) 

for some positive square-free integer P. Suppose first 

that integer k satisfies 1≤  𝑘 <
𝑝+𝛿(𝑝+1)

2
 so that 

√𝑝 
2𝑘−√𝑝−1

√𝑝−1
< 2𝑘 − 1 <  √𝑝 

2𝑘+√𝑝−1

√𝑝−1
< 𝑝. 

Then √𝑝  <
𝑦+𝑧

𝑥
≤ 𝑝;  𝑎𝑛𝑑 𝑧 − 𝑦 > 𝑧𝑗𝑘 − 𝑦𝑗𝑘 where 

𝑔𝑗𝑘
−1.(x,y,z) =(𝑒(𝑗). 𝑆(𝑘, 𝑝). (𝑥, 𝑦, 𝑧)) = (𝑥𝑗𝑘 , 𝑦𝑗𝑘 , 𝑧𝑗𝑘). 

Whenever 
𝑦+𝑧

𝑥
 is in any of the intervals in (a) –(c) 

except for a specified case of (b)(i):                                                                 

a) For j =1 and P≥ 6: (2k-1-√𝛿(𝑝) , 2𝑘 −

1)𝑤ℎ𝑒𝑟𝑒 𝑞 ≤ 𝑘 ≤ 𝑞 + 𝑟 + 1.                                                                              

Moreover, if  
𝑥+𝑧

𝑦
 = 2k-1, then 𝑧1𝑘-𝑥1𝑘 =0.                                       

b) For j = 3 and P≥ 6 , either                                                                          

i) (2k-1 ,2k-1+√𝛿(𝑝)) 𝑤ℎ𝑒𝑟𝑒 𝑞 ≤ 𝑘 ≤ 𝑞 + 𝑟 ; and 

also where k = q-1 when √𝑝 < 2𝑞 − 1 − √𝛿(𝑝) , or                            

ii) ( 2k-1, √𝑝 
2𝑘+√𝑝−1

√𝑝+1
) where k > q+r. 

However, if P≥ 10 is even and 
𝑥+𝑧

𝑦
 = 2k < 

𝑝

2
 in (b)(i), 

then there exists a positive integer multiple of (x , y 

,z) that is a binary root. This is the only possibility for 

part (c) of Definition 1.   

c) For j=2, either  

    i) √𝑝 < 
𝑦+𝑧

𝑥
 < p where k = 1 and 2≤ 𝑝 ≤ 5 or 

    ii)  √𝑝 
2𝑘+√𝑝−1

√𝑝+1
<

𝑦+𝑧

𝑥
≤ 𝑝, where p≥  6 and  

                         q + r < k < 
1

2
[√
𝑝+1

√𝑝
(
𝑦+𝑧

𝑥
) + 1 − √𝑝].  

In this case, faster convergence is obtained with the 

highest possible value of k. Moreover, if 
𝑦+𝑧

𝑥
 =p, then 

𝑧2𝑘-𝑦2𝑘 =0.    

 (Note that the case p=1 is a consequence of parts (e), 

(f) , and (g) below.)                                                                 

On the other hand, let k = 
𝑝+𝛿(𝑝+1)

2
 and  

𝑦+𝑧

𝑥
> 𝑝. Then 

(𝑥𝑗𝑘 , 𝑦𝑗𝑘 , 𝑧𝑗𝑘) satisfies Definition 1 if: 

d) (j =0) P<
𝑦+𝑧

𝑥
< √𝑝(2√𝑝 − 1). In this case z -x = 

𝑧0𝑘-𝑦0𝑘 and z>𝑧0𝑘. 

 e)    (j=1), √𝑝(2√𝑝 − 1) < 
𝑥+𝑧

𝑦
≤ 2𝑑.                                  

In this case ,  z – y > 𝑧1𝑘-𝑦1𝑘 and z > 𝑧1𝑘.                                                       

Moreover, if  
𝑦+𝑧

𝑥
 =  2𝑝 , then 𝑧1𝑘-𝑦1𝑘 = 0. 

f) (j=2) 
𝑦+𝑧

𝑥
> √𝑝(2√𝑝 + 1).  In this case, z – y > 

𝑧2𝑘-𝑦2𝑘 and z>𝑧2𝑘. 

g) (j=3) 2p< 
𝑦+𝑧

𝑥
< √𝑝(2√𝑝 + 1) in this case ,                             

z – y > 𝑧3𝑘-𝑦3𝑘 and  z>𝑧3𝑘. 

Proof. Let 1≤  𝑘 <
𝑝+𝛿(𝑝+1)

2
 so that (4) is 

straightforward. Remark 4 may be helpful with  the 

following computations since                    

 𝑒(𝑗). 𝑆(𝑘, 𝑝). 𝐴(𝑚, 𝑛, 𝑎, 𝑏) =

 𝑒(𝑗). (𝑆(𝑘, 𝑝). 𝐴(𝑚, 𝑛, 𝑎, 𝑏)).                  

(a) Let j=1 , and for (𝑥1𝑘 , 𝑦1𝑘 , 𝑧1𝑘).:                                           

𝑋1𝑘 > 0 ⟺ 𝑍1𝑘 + 𝑋1𝑘 > 𝑍1𝑘  −  𝑋1𝑘 

                ⟺  𝑛(𝑎𝑚 − 𝑏)2 −𝑚(𝑏𝑛 − 𝑎(2𝑘 −

1)2 > 0 

⟺ (
𝑦+𝑧

𝑥
 − √𝑝

2𝑘−√𝑝−1

√𝑝−1
) (

𝑦+𝑧

𝑥
 − √𝑝

2𝑘−√𝑝−1

√𝑝−1
) < 0 

⟺ √𝑝
2𝑘−√𝑝−1

√𝑝−1
<

𝑦+𝑧

𝑥
< √𝑝

2𝑘+√𝑝−1

√𝑝−1
.  

Similarly  

𝑌1𝑘 > 0 ⟺ 𝑍1𝑘 + 𝑦1𝑘 > 𝑍1𝑘  −  𝑦1𝑘 

⟺ (𝑏𝑛 − 𝑎(2𝑘 − 1))(𝑏𝑛 − 𝑎𝑝) > 0 

⟺ 
𝑦+𝑧

𝑥
<  2𝑘 − 1 or 

𝑦+𝑧

𝑥
> 𝑝. 

𝑀𝑜𝑟𝑒𝑜𝑣𝑒𝑟, 2 𝑍1𝑘  =  𝑛(𝑝 + 1) 𝑏
2 − (4𝑎𝑘𝑝) 𝑏 +

 𝑎2𝑚(𝑝 + (2𝑘 − 1)2 = 0 is a quadratic equation in b 
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with discriminant -4𝑎2(𝑝 − 2𝑘 + 1)2 < 0.                 

Evaluating 2 𝑍1𝑘 at b = 4akp , we find that  

2 𝑍1𝑘  =  16𝑎2𝑘2𝑝2(𝑛(𝑝 + 1) − 1) + 𝑎2𝑚(𝑝 +

(2𝑘 − 1)2)  >  0 , so 𝑍1𝑘 is always positive. 

It follows that the components are all positive if and 

only if  √𝑝
2𝑘−√𝑝−1

√𝑝−1
<

𝑦+𝑧

𝑥
< √𝑑

2𝑘+√𝑝−1

√𝑝−1
.  Next, 

𝑛[(𝑧 − 𝑦) − (𝑍1𝑘 − 𝑦1𝑘)] = n[2𝑎2𝑚− 𝛿(𝑝) +

1)𝑚(𝑎(2𝑘 − 10) − 𝑏𝑛2] 

= -𝛿(𝑝 + 1)𝑑[𝑏𝑛 − 𝑎(2𝑘 − 1) − √𝛿(𝑝)] [𝑏𝑛 −

𝑎(2𝑘 − 1) + √𝛿(𝑝)]; 

And z -y > 𝑍1𝑘 − 𝑦1𝑘  if and only if 2k-1 -√𝛿(𝑝) <
𝑦+𝑧

𝑥
< 2𝑘 − 1 + √𝛿(𝑝). 

Note that it is straightforward to show 

 √𝑝
2𝑘−√𝑝−1

√𝑝−1
<

𝑦+𝑧

𝑥
< 2𝑘 − 1 − √𝛿(𝑝) if and only if  

k < 
1

2
[√𝑝(√𝑝 − √𝛿(𝑝)) + 1 + √𝛿(𝑝)]. By 

hypothesis, assume that  

2k -1 - √𝛿(𝑝) < 
𝑦+𝑧

𝑥
≤  2𝑘 − 1 where q≤ 𝑘 ≤ 𝑞 +

𝑟 + 1. 

By the above, the components of (𝑥𝑗𝑘 , 𝑦𝑗𝑘 , 𝑧𝑗𝑘) are 

positive and z -y > 𝑍1𝑘 − 𝑦 . Since 

 k≤ (𝑞 + 𝑟) + √𝛿(𝑝) <
1

2
[√𝑝(√𝑝 − √𝛿(𝑝)) + 1 +

√𝛿(𝑝)]. Therefore by the second equivalence above, 

we have that  √𝑝
2𝑘−√𝑝−1

√𝑝−1
<  2𝑘 − 1 − √𝛿(𝑝) < 

𝑦+𝑧

𝑥
≤  2𝑘 − 1 < 2𝑘 − 1 + √𝛿(𝑝) ; and thus z-y > 

𝑍1𝑘 − 𝑦1𝑘. Note that √𝑝 < 
𝑦+𝑧

𝑥
≤  2𝑘 − 1 , it follows 

that 

K > √
𝑝+1

2
 =  √

𝑝+3

2
 − 1 =  𝑞 − 1 ; so the hypothesis 

that k≥ 𝑞 is necessary. Finally, if 
𝑦+𝑧

𝑥
 = 2𝑘 − 1, then 

a(𝑍1𝑘 − 𝑦1𝑘) = 𝑚 (
𝑦+𝑧

𝑥
− (2𝑘 − 1)2) = 0 

(b) Let j =3. 

𝑋3𝑘 ≥ 0 ⟺ √𝑝
2𝑘−√𝑝−1

√𝑝−1
<

𝑦+𝑧

𝑥
< √𝑑

2𝑘+√𝑝−1

√𝑝+1
 as 

with 𝑋1𝑘 > 0,similary  𝑌3𝑘 > 0 ⟺ 𝑍3𝑘 + 𝑋3𝑘 >

 𝑍3𝑘 − 𝑋3𝑘 

 ⟺ (𝑏𝑛 − 𝑎(2𝑘 − 1)))(𝑏𝑛 − 𝑎𝑝) < 0 

⟺  2𝑘 − 1 < 
𝑦+𝑧

𝑥
< √𝑑

2𝑘+√𝑝−1

√𝑝+1
. Next, z -x > 𝑍3𝑘  −

 𝑋3𝑘 is equivalent to 2k-1 -√𝛿(𝑝) <
𝑦+𝑧

𝑥
< 2𝑘 − 1 +

√𝛿(𝑝) as in (a).  

Moreover, z -y = 𝑍3𝑘  −  𝑦3𝑘 if and only if   
𝑦+𝑧

𝑥
=

2𝑘 − 1 + √𝛿(𝑝) . In this case, if d is even, then (x 

,y,z) is a binary root by theorem 2.                                          

By direct calculation, 2𝑘 − 1 + √𝛿(𝑝) < 

√𝑝
2𝑘+√𝑝−1

√𝑝+1
 if and only if  

 k< 
1

2
[√𝑝(√𝑝 − √𝛿(𝑝)) + 1 − √𝛿(𝑝)] since 2k-1 - 

√𝛿(𝑝)  < 2𝑘 − 1 < √𝑝
2𝑘+√𝑝−1

√𝑝+1
 by (4) , and we have 

the above intervals on 
𝑦+𝑧

𝑥
 for positivity and the 

inequality z -x > 𝑍3𝑘  −  𝑋3𝑘, it follows that part (a) 

of definition 1 holds for (𝑥3𝑘, 𝑦3𝑘 , 𝑧3𝑘) if and only if                        

i) 2k-1 < 
𝑦+𝑧

𝑥
 < 2k-1 + √𝛿(𝑝) when                                             

k< 
1

2
[√𝑝(√𝑝 − √𝛿(𝑝)) + 1 − √𝛿(𝑝)] and                                         

ii) 2k-1 < 
𝑦+𝑧

𝑥
 < √𝑃

2𝑘+√𝑝−1

√𝑝+1
  otherwise.                                     

Let d ≥ 6 and assume that k< 
1

2
[√𝑝(√𝑝 − √𝛿(𝑝)) +

1 − √𝛿(𝑝)] . By remark 1, k≤ 𝑞 + 𝑟. Then 2k-1 < 
𝑦+𝑧

𝑥
 < 2k-1 + √𝛿(𝑝) holds where 

𝑦+𝑧

𝑥
> √𝑝 , so                                     

k > 
1

2
[√𝑝(√𝑝 − √𝛿(𝑝)) + 1]. It follows By theorem 

2, a positive integer multiple of ( x , y , z) will be 

binary root.                                                                                                             

(c) Let j =2. 

     𝑋2𝑘 > 0 ⟺ 𝑍2𝑘 + 𝑋2𝑘 > 𝑍2𝑘  −  𝑋2𝑘 

⟺ m(𝑏𝑛 − 𝑎(2𝑘 − 1)2 − 𝑛(𝑎𝑚 − 𝑏)2) > 0 

        ⟺ (
𝑥+𝑧

𝑦
− √𝑝

2𝑘−√𝑝−1

√𝑝−1
) (

𝑥+𝑧

𝑦
− √𝑑

2𝑘−√𝑝−1

√𝑝+1
)>0 

⟺  𝑒𝑖𝑡ℎ𝑒𝑟 
𝑦+𝑧

𝑥
< √𝑝

2𝑘−√𝑝−1

√𝑝−1
or
𝑦+𝑧

𝑥
> √𝑝

2𝑘−√𝑝−1

√𝑝+1
 

𝑌2𝑘 > 0 ⟺ 2k-1 < 
𝑦+𝑧

𝑥
 < 𝑝   as with 𝑌3𝑘 > 0. 

𝑍2𝑘 > 0 is identical to that of 𝑍1𝑘 > 0. 

It follows that all components are positive if and only 

if 

  √𝑝
2𝑘−√𝑝−1

√𝑝+1
<

𝑦+𝑧

𝑥
< 𝑝.                                                                             

And it is easy to check that 

 √𝑑
2𝑘−√𝑝−1

√𝑝+1
< √𝑝(√𝑝 − √𝛿(𝑝)) if and only if  
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k < 
1

2
[√𝑝(√𝑝 − √𝛿(𝑝)) + 1 + √𝛿(𝑝)]. Therefore 

by (4) and the above results , (𝑥2𝑘 , 𝑦2𝑘 , 𝑧2𝑘) fulfils 

part (a) of Definition 1 if and only if 

√𝑝(√𝑝 − √𝛿(𝑝)) < 
𝑦+𝑧

𝑥
 < 𝑝 when k < 

1

2
[√𝑝(√𝑝 −

√𝛿(𝑝)) + 1 + √𝛿(𝑝)], and   √𝑝
2𝑘−√𝑝−1

√𝑝+1
< 

𝑦+𝑧

𝑥
< 𝑑 

otherwise. 

It follows that 

i) √𝑝 < 
𝑦+𝑧

𝑥
 < p where k = 1 and 2≤ 𝑝 ≤ 5 or 

ii)  √𝑝 
2𝑘+√𝑝−1

√𝑝+1
<

𝑦+𝑧

𝑥
≤ 𝑝, where p≥  6 and  

q + r < k < 
1

2
[√
𝑝+1

√𝑝
(
𝑦+𝑧

𝑥
) + 1 − √𝑝].  

In this case, faster convergence is obtained with the 

highest possible value of k. 

Finally , if 
𝑦+𝑧

𝑥
 = 𝑝 , then n(𝑍2𝑘  −  𝑦2𝑘) = 

(𝑏𝑛 − 𝑎𝑝)2 = 0. 

On the other hand, suppose that k = 
𝑝+𝛿(𝑝+1)

2
 where p 

= m n is a square free. 

(d) (j=0) 

 𝑋0𝑘 > 0  ⟺ 𝑛(𝑍0𝑘 + 𝑋0𝑘) − 𝑛( 𝑍0𝑘  −  𝑋0𝑘) > 0 

⟺ (𝑏𝑛 − 2𝑎𝑝)2-(𝑎√𝑝)
2
>0 

                       ⟺ (
𝑦+𝑧

𝑥
− √𝑝(2√𝑝 − 1)) (

𝑦+𝑧

𝑥
−

√𝑝(2√𝑝 + 1)) > 0 

⟺  𝑒𝑖𝑡ℎ𝑒𝑟 
𝑦+𝑧

𝑥
< √𝑝(2√𝑝 − 1) or 

 𝑦+𝑧

𝑥
>

√𝑝(2√𝑝 + 1). 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑌0𝑘 > 0 ⟺ 𝑛(𝑍0𝑘 + 𝑌0𝑘) − 𝑛( 𝑍0𝑘  −

 𝑌0𝑘) > 0 

                              ⟺  𝑏𝑛 < 2𝑎𝑝 ⟺ 
𝑦+𝑧

𝑥
< 2𝑝. 

𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝑍0𝑘 = n 𝑏2 − (4𝑎𝑚𝑛)𝑏 + 𝑎2𝑚(4𝑚𝑛 +

1)  = 0 is a quadratic In b with roots b = (2am√𝑛 ±

𝑎√𝑚𝑖)/√𝑛. Evaluating 𝑍0𝑘 at b = 2am√𝑛 , we have 

that 

𝑍0𝑘 = 𝑎
2𝑚(1 + 4𝑚𝑛(√𝑛 − 1)

2
) > 0, so 𝑍0𝑘 is 

always positive. It follows that the components are 

positive if and only if  
𝑦+𝑧

𝑥
< √𝑝(2√𝑝 − 1).  

Next , z – y =2 𝑎2𝑚 = 𝑍0𝑘  −  𝑦0𝑘. 

Moreover, n(z-𝑍0𝑘)  =  4𝑎𝑝(𝑏𝑛 − 𝑎𝑝) =

 4𝑎2𝑝(
𝑦+𝑧

𝑥
− 𝑝) and z> 𝑍0𝑘 since by assumption 

𝑦+𝑧

𝑥
>  𝑝 ; so (d) follows. 

Trees of Primitive Solutions: 

 A tree of the primitive solutions to (1) is an infinite 

network of nods where each node branches ( in our 

case via ascent matrix multiplications) to  a number 

of subsequent nodes, with the totality giving all , and 

only , primitive solutions without duplication. By 

theorem 1, trees exist when d is 2 , 6, or any odd 

square-free positive integer. For any other even 

square-free d, the primitive solutions are attained 

from a finite forest of such trees.    Specifically, for 

any given node (x, y, z) there is a unique path via 

descent matrices back through the tree to either 

(1,0,1) or a primitive binary root; i.e., if (x , y ,z) is 

not a root , then exactly one of the matrices g in M(P)* 

or M(p)** exists such that g-1.(x , y , z)  produces a 

new node (x′, y′, z′) that satisfies Definition 1.                                            

In the classical case p =1, the tree of primitive 

solutions is derived by simply taking all possible 

ascending products of three generators stemming 

from (1, 0 ,1). This is possible since products always 

produce distinct primitive solutions in this case.                                                               

For square-free P > 1 , families of generators are 

defined for the primitive solutions that satisfy the 

requirements for a tree structure with four exceptions 

that may easily be remedied by adjusting or removing 

improper branches.   

Let G denote G(P)* or G(p)** , and let g = S(k , p).e(j) 

be in G. Reversing the descent notion of definition 1, 

Assume (x′, y′, z′) is a primitive solution of (1).                                  

g. (x′, y′, z′) = (x , y, z)  and , as in the proof of 

Theorem 1,  e(j). S( k, P). (x , y ,z) = i′ (x′, y′, z′) 

satisfies Fermat’s Descent method for some positive 

integer i′. Unlike the case P = 1, it is necessary to 

consider the following anomalies.                                                                                   

a) The components of (x, y, z) may not all be positive.      

b) The components of (x, y, z) may be positive but 

not relatively prime.   

c) For some odd square-free P, there may exist g in G 

such that the binary root conditions z′- y′ = z -y in part 

(c) of Definition 1 hold:  

d) There are duplicate nodes in the first level of the 

derived tree that must be pruned. They arise form the 

subsets 

{𝑆(𝑞 + 𝑠, 𝑝). 𝑒(3). 𝑤, 𝑆(𝑞 + 𝑠 + 1, 𝑝). 𝑒(1). 𝑤} (0 ≤

𝑠 ≤ 𝑟) 
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For some primitive root w as follows.                                          

i) For odd square-free P≥  13 , the nearest nodes in 

the abutting sets agree when w = ( 1,0 ,1):                                             

{𝑆(𝑞 + 𝑠 + 1, 𝑝). 𝑒(1). 𝑤, 𝑆(𝑞 + 𝑠 + 1, 𝑝). 𝑒(3). 𝑤} 

(0 ≤ 𝑠 ≤ 𝑟)    Since e(1) . w = e(3) .w                                                                                     

ii) For even square-free P≥  10 and standard binary 

root w = 𝐴 (
𝑝

2
, 2, 𝑘, 1) as defined in Theorem 2, there 

exists a unique s in [0, r] such that 

𝑆(𝑞 + 𝑠, 𝑝). 𝑒(3). 𝑤

𝑔𝑐𝑑[𝑆(𝑞 + 𝑠, 𝑝), 𝑒(3). 𝑤]

=
𝑆(𝑞 + 𝑠 + 1, 𝑝). 𝑒(1). 𝑤

𝑔𝑐𝑑[𝑆(𝑞 + 𝑠 + 1, 𝑝), 𝑒(1). 𝑤]
 

iii) The interval decomposition in the proof of 

theorem 1 is disjoint except for the intervals 

corresponding to the descent matrices e(3). S(q + s, 

p) and e(1). S(q+s+1 ,p) when p is odd. If (x , y, z) = 

A( m, n, a, b) is a primitive solution to (1) such that b 

x n is in the intersection   [(𝑎(2(𝑞 + 𝑠) + 1) + 1 −

√2), (𝑎(2(𝑞 + 𝑠) + 1) + 1 − √2)] of these 

intervals, then there exist two distinct paths form 

(1,0,1) to (x, y, z). 

CONCLUSION 

By the parametric intervals method of descent, after 

some modifications at each level, the primitive 

solutions of (1) satisfy requirements for one or more 

tree structures with generating sets G(P)* or G(p)** 
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